Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


We synthesize semiconductor nanostructures to serve both as test structures for measurement techniques and as building blocks for novel metrology tools and devices, with a focus on GaN nanowires.  We also adapt traditional methods of semiconductor characterization for use on nanostructures to evaluate accuracy and determine best practices for those methods, including Raman spectroscopy, photoluminescence, triple-axis x-ray diffraction, and electrical device fabrication and testing.


Four examples of GaN nanostructures grown with selective epitaxy by molecular beam epitaxy, illustrating different morphology for Ga-polar vs. N-polar crystals.

Four examples of GaN nanostructures grown with selective epitaxy by molecular beam epitaxy, illustrating different morphology for Ga-polar vs. N-polar crystals.

Scanning probe metrology using GaN nanowire tips: A major goal of our project is to develop new metrology tools for examining the optoelectronic properties of semiconductor nanostructures. We are currently developing GaN nanowires as multifunctional scanning probe tips, combining light emission, microwave reflection, and topology measurement. The nanowires have been shown to retain their shape indefinitely, thus they are more durable than standard glass near-field scanning optical microscopy (NSOM) tips and more reproducible than state-of-the-art Pt tips for near-field scanning microwave microscopy (NSMM). GaN nanostructure arrays with calibrated reference dimensions are available as Standard Reference Instrument 6012.

Read more about the Integrated Near-field Optoelectronic (INFO) Scanning Probe >>

Read more about GaN nanowires >>

Optical measurements of semiconductor nanowires: Using time-resolved photoluminescence (PL) and geometrical variations in nanowires, we demonstrated how to extract a surface recombination velocity. The temperature dependence of the PL lifetime in turn provided a means to measure internal quantum efficiency of GaN nanowires without resorting to inaccurate assumptions about quantum efficiency at low temperature.

High Q Nanoscale Mechanical Resonators: GaN nanowires have unusually low mechanical resonance losses for a nanoscale object. In collaboration with Prof. Charles Rogers at the University of Colorado, we have demonstrated a number of their unique properties and potential applications.

Major Accomplishments

  • Fabricated NSMM tips from GaN nanowires that outperform state-of-the-art Pt tips
  • Demonstrated best GaN nanowire MESFET devices and single-nanowire LEDs to date
  • Developed use of multiple methods to estimate carrier concentration and mobility in nanowires
  • Developed reliable method for estimating internal quantum efficiency for single nanowires
  • Demonstrated programmable spectral solar simulator on a variety of photovoltaic materials
  • Defect-free GaN nanowires received R&D Micro Nano 25 Award for NIST in 2006
Created September 15, 2010, Updated April 26, 2018