Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy



Norman A. Sanford, Paul T. Blanchard, Kristine A. Bertness, Lorelle Mansfield, John B. Schlager, Aric W. Sanders, Alexana Roshko, Beau Burton, Steven George


Analysis of steady-state and transient photoconductivity measurements at room temperature performed on c-axis oriented GaN nanowires yielded estimates of free carrier concentration, drift, mobility, surface band bending, and surface capture coefficient for electrons. Samples grown (unintentionally n-type) by nitrogen-plasma-assisted molecular beam epitaxy primarily from two separate growth runs were examined. The results revealed carrier concentration in the range of (3-6)X1016 cm-3 for one growth run, roughly 5 X 1014-1 X 1015 cm-3 for the second, and drift mobility in the range of 500- 700 cm2/(V s) for both. Nanowires were dispersed onto insulating substrates and contacted forming single-wire, two-terminal structures with typical electrode gaps of {approximately equal} 3-5 υm. When biased at 1 V bias and illuminated at 360 nm (3.6 mW/cm2) the thinner ({approximately equal} 100 nm diameter) nanowires with the higher background doping showed an abrupt increase in photocurrent from 5 pA (noise level) to 0.1-1 {mu)A. Under the same conditions, thicker (151-320 nm) nanowires showed roughly ten times more photocurrent, with dark currents ranging from 2 nA to 1 υA. With the light blocked, the dark current was restored in a few minutes for the thinner samples and an hour or more for the thicker ones. The samples with lower carrier concentration showed similar trends. Excitation in the 360-550 nm range produced substantially weaker photocurrent with comparable decay rates. Nanowire photoconductivity arises from a reduction in the depletion layer via photogenerated holes drifting to the surface and compensating ionized surface acceptors. Simulations yielded (dark) surface band bending in the vicinity of 0.2-0.3 V and capture coefficient in the range of 10-23-10-19 cm2. Atomic layer deposition (ALD) was used to conformally deposit {approximately equal} 10 nm of A1203 on several devices. Photoconductivity, persistent photoconductivi
Journal of Applied Physics


Nanowires, wide-bandgap semiconductors, GaN, nanotechnology, photoconductivity, depletion layers, atomic layer deposition


Sanford, N. , Blanchard, P. , Bertness, K. , Mansfield, L. , Schlager, J. , Sanders, A. , Roshko, A. , Burton, B. and George, S. (2010), Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy, Journal of Applied Physics, [online], (Accessed May 17, 2022)
Created February 12, 2010, Updated February 19, 2017