Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search Publications by

Kin (Charles) Cheung (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 118

Dynamics studies of polarization switching in ferroelectric hafnium zirconium oxide

May 12, 2021
X. Lyu, M. Si, Pragya Shrestha, Kin (Charles) Cheung, P. D. Ye
In this paper, we review the ultrafast direct measurement on the transient ferroelectric polarization switching in hafnium zirconium oxide with crossbar metal-insulator-metal (MIM) structures including materials development, device fabrication, structure

Record Fast Polarization Switching Observed in Ferroelectric Hafnium Oxide Crossbar Arrays

July 2, 2020
Pragya R. Shrestha, xiao Lyu, Mengwei Si, Jason P. Campbell, Kin P. Cheung, Peide Ye
The polarization switching speed of ferroelectric (FE) hafnium zirconium oxide (HZO) is studied with the device size down to sub-μm in lateral dimension. Ultrafast measurement of transient switching current on metal-ferroelectric-metal (MFM) device with a

Anomalous accelerated negative-bias- instability (NBI) at low drain bias

June 30, 2020
Kin P. Cheung
We observed at very low drain bias an anomalous acceleration of Negative-bias-instability at room temperature, as if the channel temperature has been raised significantly. The channel width and channel length dependent of this acceleration suggest that in

Memory update characteristics of carbon nanotube memristors (NRAM) under circuitry-relevant operation conditions

June 30, 2020
Dmitry Veksler, gennadi bersuker, A W. Bushmaker, Maribeth Mason, Pragya Shrestha, Kin P. Cheung, Jason Campbell, T Rueckes, L Clevlend, H Luan, D C. Gilmer
Carbon nanotubes (CNT) resistance-change memory devices were assessed for neuromorphic applications under high frequency use conditions by employing the ultra-short (100 ps -10 ns) voltage pulse technique. Under properly selected operation conditions, CNTs

Nanoscale MOSFET as a potential Room-Temperature Quantum Current Source

March 31, 2020
Kin P. Cheung, Jason P. Campbell
Nanoscale metal-oxide-semiconductor field-effect-transistors (MOSFETs) with only one defect at the interface can potentially become a single electron turnstile linking frequency and electronic charge to realize the elusive quantized current source. Charge

Nonresonant transmission line probe for sensitive interferometric electron spin resonance detection

August 5, 2019
Pragya R. Shrestha, Nandita S. Abhyankar, Mark A. Anders, Kin P. Cheung, Robert M. Gougelet, Jason T. Ryan, Veronika A. Szalai, Jason P. Campbell
Electron spin resonance (ESR) spectroscopy measures paramagnetic free radicals, or electron spins, in a variety of biological, chemical, and physical systems. Detection of diverse paramagnetic species is important in applications ranging from quantum

Switching variability factors in compliance-free metal oxide RRAM

March 31, 2019
Dmitry Veksler, Gennadi Bersuker, A W. Bushmaker, Pragya Shrestha, Kin P. Cheung, Jason Campbell
Switching variability in polycrystalline compliance-free HfO2-based 1R RRAM is evaluated employing ultra-fast low voltage pulse approach. Changes in filament conductivity are linked to the variations of energy released in a switching process. This study

An Ultra-fast Multi-level MoTe2-based RRAM

January 17, 2019
Albert Davydov, Leonid A. Bendersky, Sergiy Krylyuk, Huairuo Zhang, Feng Zhang, Joerg Appenzeller, Pragya R. Shrestha, Kin P. Cheung, Jason P. Campbell
We report multi-level MoTe2-based resistive random-access memory (RRAM) devices with switching speeds of less than 5 ns due to an electric-field induced 2H to 2Hd phase transition. Different from conventional RRAM devices based on ionic migration, the

Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station

January 14, 2019
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows

Parasitic engineering for RRAM control

October 15, 2018
Pragya R. Shrestha, David M. Nminibapiel, Dmitry Veksler, Jason P. Campbell, Jason T. Ryan, helmut Baumgart, Kin P. Cheung
The inevitable current overshoot which follows forming or switching of filamentary resistive random access memory (RRAM) devices is often perceived as a source of variability that should be minimized. This sentiment has resulted in efforts to curtail the

Non-tunneling origin of the 1/f noise in SiC MOSFET

July 1, 2018
Kin (Charles) Cheung, Jason Campbell
Abstract: It has long been established that MOSFET random telegraph noise and the cumulative 1/f noise is the result of inversion charge tunneling in and out of bulk traps in the gate oxide near the interface. The tunneling nature is a key concept upon

First Direct Experimental Studies of Hf0.5Zr0.5O2 Ferroelectric Polarization Switching Down to 100-picosecond in Sub-60mV/dec Germanium Ferroelectric Nanowire FETs

June 18, 2018
Wonil Chung, Mengwei Si, Pragya Shrestha, Jason Campbell, Kin P. Cheung, Peide Ye
In this work, ultrafast pulses with pulse widths ranging from 100 ps to seconds were applied on the gate of Ge ferroelectric (FE) nanowire (NW) pFETs with FE Hf0.5Zr0.5O2 (HZO) gate dielectric exhibiting steep subthreshold slope (SS) below 60 mV/dec bi

SiC power MOSFET gate oxide breakdown reliability – Current status

May 3, 2018
Kin P. Cheung
SiC power MOSFET is poised to take off commercially. Gate oxide breakdown reliability is an important obstacle standing is the way. Early prediction of poor intrinsic reliability comparing to silicon MOSFET, while theoretically sound, has now proven way

Glassy-Electret Random Access Memory - A naturally Nanoscale Memory Concept

April 19, 2018
Jason Campbell, Pragya Shrestha, Vasileia Georgiou, D. E. Ioannou, Kin (Charles) Cheung
Self-heating is a serious issue in state-of-the-art MOSFET technology. Much efforts are currently being made to combat this problem to enable further scaling. In this work, self-heating in nanoscale MOSFET is leveraged and enhanced to enable a new memory

Wafer-Level Electrically Detected Magnetic Resonance:Magnetic Resonance in a Probing Station

March 20, 2018
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel semiconductor reliability technique that incorporates an electrically detected magnetic resonance (EDMR) spectrometer within a conventional semiconductor wafer probing station. EDMR is an ultrasensitive electron paramagnetic resonance

Analysis and Control of RRAM Overshoot Current

January 15, 2018
Pragya R. Shrestha, David M. Nminibapiel, Jason P. Campbell, Jason T. Ryan, Dmitry Veksler, Helmut Baumgart, Kin P. Cheung
To combat the large variability problem in RRAM,current compliance elements are commonly used to limit the inrush current during the forming operation. Regardless of the compliance implementation (1R-1R or 1T-1R), some degree of current overshoot is

Ferroelectricity in Polar Polymer-based FETs: A Hysteresis Analysis

January 15, 2018
Vasileia Georgiou, Dmitry Veksler, Jason Campbell, Jason Ryan, Pragya Shrestha, D. E. Ioannou, Kin P. Cheung
There is an increasing number of reports on polar polymer-based Ferroelectric Field Effect Transistors (FeFETs), where the hysteresis of the drain current - gate voltage (Id-Vg) curve is investigated as the result of the ferroelectric polarization effect

Highly Efficient Rapid Annealing of Thin Polar Polymer Film Ferroelectric Devices at Sub-Glass Transition Temperature

December 18, 2017
Vasileia Georgiou, Dmitry Veksler, Jason T. Ryan, Jason P. Campbell, Pragya R. Shrestha, D. E. Ioannou, Kin P. Cheung
An unexpected rapid anneal of electrically active defects in an ultra-thin (15.5 nm) polar polyimide film at and below glass transition temperature (Tg) is reported. The polar polymer is the gate dielectric of a thin-film-transistor (TFT). Gate leakage

Towards reliable RRAM performance: macro- and microscopic analysis of operation processes

November 9, 2017
Gennadi Bersuker, Dmitry Veksler, David M. Nminibapiel, Pragya Shrestha, Jason Campbell, Jason Ryan, Helmut Baumgart, Maribeth Mason, Kin P. Cheung
Resistive RAM technology promises superior performance and scalability while employing well- developed fabrication processes. Conductance is strongly affected by structural changes in oxide insulators that make cell switching properties extremely sensitive

Microwave Evaluation of Electromigration Susceptibility in Advanced Interconnects

November 1, 2017
Yaw S. Obeng, Kin P. Cheung, Dmitry Veksler, Christopher E. Sunday
Traditional metrology has been unable to adequately address the needs of emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood

Local field effect on charge-capture/emission dynamics

October 30, 2017
Kin P. Cheung, Dmitry Veksler, Jason P. Campbell
Charge-capture/emission is ubiquitous in solid state devices. Its dynamics often play critical roles in device operation and reliability. Treatment of this basic process is found in many text books and is considered well understood. As in many solid state