Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station



Duane J. McCrory, Mark A. Anders, Jason T. Ryan, Pragya R. Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason P. Campbell


We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows EDMR measurements to be performed on an unaltered, fully-processed semiconductor wafer. Our measurements replace the conventional EPR microwave cavity or resonator with a very small non-resonant near-field microwave probe. Bipolar amplification effect (BAE), spin dependent charge pumping (SDCP), and spatially-resolved EDMR is demonstrated on various 4H-SiC MOSFET structures. These measurements are made via both “rapid scan” frequency-swept EDMR, and “slow scan” frequency swept EDMR. The elimination of the resonance cavity and incorporation with a wafer probing station greatly simplifies the EDMR detection scheme and offers promise for widespread EDMR adoption in semiconductor reliability laboratories.
Review of Scientific Instruments
Created January 14, 2019, Updated February 7, 2019