Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Search Publications by

Jason Ryan (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 58

Intermediate spin pair relaxation through modulation of isotropic hyperfine interaction in frequency-swept spin-dependent recombination in 4H-SiC

February 7, 2022
Author(s)
James Ashton, Brian Manning, Stephen Moxim, Fedor Sharov, Patrick Lenahan, Jason Ryan
Electrically detected magnetic resonance (EDMR) measurements have been extended to sub-mT measurements through utilization of frequency sweeping of the oscillating magnetic field, where conventional electron paramagnetic resonance-based measurements

Detection of individual spin species via frequency-modulated charge pumping

February 2, 2022
Author(s)
James Ashton, Mark Anders, Jason Ryan
We utilize the recently developed frequency-modulated charge pumping technique to detect a single charge per cycle, which strongly suggests a single Si/SiO2 interface trap. This demonstration in sub-micron MOSFETs, in which scaling of the gate oxide yields

Model for the Bipolar Amplification Effect

December 10, 2021
Author(s)
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface

Nonresonant transmission line probe for sensitive interferometric electron spin resonance detection

August 5, 2019
Author(s)
Pragya R. Shrestha, Nandita S. Abhyankar, Mark A. Anders, Kin P. Cheung, Robert M. Gougelet, Jason T. Ryan, Veronika A. Szalai, Jason P. Campbell
Electron spin resonance (ESR) spectroscopy measures paramagnetic free radicals, or electron spins, in a variety of biological, chemical, and physical systems. Detection of diverse paramagnetic species is important in applications ranging from quantum

Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station

January 14, 2019
Author(s)
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel electron paramagnetic resonance (EPR) technique that merges electrically detected magnetic resonance (EDMR) with a conventional semiconductor wafer probing station. This union, which we refer to as wafer-level EDMR (WL-EDMR), allows

Parasitic engineering for RRAM control

October 15, 2018
Author(s)
Pragya R. Shrestha, David M. Nminibapiel, Dmitry Veksler, Jason P. Campbell, Jason T. Ryan, helmut Baumgart, Kin P. Cheung
The inevitable current overshoot which follows forming or switching of filamentary resistive random access memory (RRAM) devices is often perceived as a source of variability that should be minimized. This sentiment has resulted in efforts to curtail the

Wafer-Level Electrically Detected Magnetic Resonance:Magnetic Resonance in a Probing Station

March 20, 2018
Author(s)
Duane J. McCrory, Mark Anders, Jason Ryan, Pragya Shrestha, Kin P. Cheung, Patrick M. Lenahan, Jason Campbell
We report on a novel semiconductor reliability technique that incorporates an electrically detected magnetic resonance (EDMR) spectrometer within a conventional semiconductor wafer probing station. EDMR is an ultrasensitive electron paramagnetic resonance

Analysis and Control of RRAM Overshoot Current

January 15, 2018
Author(s)
Pragya R. Shrestha, David M. Nminibapiel, Jason P. Campbell, Jason T. Ryan, Dmitry Veksler, Helmut Baumgart, Kin P. Cheung
To combat the large variability problem in RRAM,current compliance elements are commonly used to limit the inrush current during the forming operation. Regardless of the compliance implementation (1R-1R or 1T-1R), some degree of current overshoot is

Ferroelectricity in Polar Polymer-based FETs: A Hysteresis Analysis

January 15, 2018
Author(s)
Vasileia Georgiou, Dmitry Veksler, Jason Campbell, Jason Ryan, Pragya Shrestha, D. E. Ioannou, Kin P. Cheung
There is an increasing number of reports on polar polymer-based Ferroelectric Field Effect Transistors (FeFETs), where the hysteresis of the drain current - gate voltage (Id-Vg) curve is investigated as the result of the ferroelectric polarization effect

Highly Efficient Rapid Annealing of Thin Polar Polymer Film Ferroelectric Devices at Sub-Glass Transition Temperature

December 18, 2017
Author(s)
Vasileia Georgiou, Dmitry Veksler, Jason T. Ryan, Jason P. Campbell, Pragya R. Shrestha, D. E. Ioannou, Kin P. Cheung
An unexpected rapid anneal of electrically active defects in an ultra-thin (15.5 nm) polar polyimide film at and below glass transition temperature (Tg) is reported. The polar polymer is the gate dielectric of a thin-film-transistor (TFT). Gate leakage

Towards reliable RRAM performance: macro- and microscopic analysis of operation processes

November 9, 2017
Author(s)
Gennadi Bersuker, Dmitry Veksler, David M. Nminibapiel, Pragya Shrestha, Jason Campbell, Jason Ryan, Helmut Baumgart, Maribeth Mason, Kin P. Cheung
Resistive RAM technology promises superior performance and scalability while employing well- developed fabrication processes. Conductance is strongly affected by structural changes in oxide insulators that make cell switching properties extremely sensitive

Impact of RRAM Read Fluctuations on the Program-Verify Approach

May 22, 2017
Author(s)
David M. Nminibapiel, Dmitry Veksler, Pragya Shrestha, Jason Campbell, Jason Ryan, Helmut Baumgart, Kin P. Cheung
The stochastic nature of the conductive filaments in oxide-based resistive memory (RRAM) represents a sizeable impediment to commercialization. As such, program-verify methodologies are highly alluring. However, it was recently shown that program-verify

Characteristics of Resistive Memory Read Fluctuations in Endurance Cycling

January 23, 2017
Author(s)
David M. Nminibapiel, Dmitry Veksler, Pragya R. Shrestha, Jihong Kim, Jason P. Campbell, Jason T. Ryan, Helmut Baumgart, Kin P. Cheung
We report on new fluctuation dynamics of the high resistance state of Hafnia-based RRAM devices after RESET. We observe that large amplitude fluctuations occur more frequently immediately after programming and their frequency of occurrence decays in the

Rapid and Accurate C-V Measurements

October 1, 2016
Author(s)
Jihong Kim, Pragya Shrestha, Jason Campbell, Jason Ryan, David M. Nminibapiel, Joseph Kopanski, Kin P. Cheung
We report a new technique for the rapid measurement of full capacitance-voltage (C-V) characteristic curves. The displacement current from a 100 MHz applied sine-wave, which swings from accumulation to strong inversion, is digitized directly using an

Modeling early breakdown failures of gate oxide in SiC power MOSFETs

July 14, 2016
Author(s)
Zakariae Chbili, Asahiko Matsuda, Jaafar Chbili, Jason T. Ryan, Jason P. Campbell, Mhamed Lahbabi, D. E. Ioannou, Kin P. Cheung
One of the most serious technology roadblocks for SiC DMOSFETs is the significant occurrence of early failures in time-dependent-dielectric-breakdown (TDDB) testing. Conventional screening methods have proved ineffective because the remaining population is

Observation of Strong Reflection of Electron Waves Exiting a Ballistic Channel at Low Energy

June 10, 2016
Author(s)
Jason Campbell, Jason Ryan, Kin P. Cheung, David J. Gundlach, Changze Liu, Canute I. Vaz, Richard G. Southwick III, Anthony S. Oates, Ru Huang
Wave scattering by a potential step is a nearly ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the