Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 101 - 125 of 748

Contact resistance in organic field-effect transistors: conquering the barrier

May 15, 2020
Author(s)
Matthew Waldrip, Oana Jurchescu, David J. Gundlach, Emily Bittle
Organic semiconductors have sparked significant interest due to their inherent properties as flexible, solution processible, and chemically tunable electronic materials. In the last 10 years, the improvements in charge carrier mobility in small molecule

Optimization of photoluminescence from W centers in silicon-on-insulator for waveguide-coupled sources

May 13, 2020
Author(s)
Sonia M. Buckley, Alexander N. Tait, Galan Moody, Kevin L. Silverman, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, Stephen Olson, Joshua Hermann, Satyvalu Papa Rao
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218\textmu m. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diode sources. Here we optimize

In situ transport measurements reveal source of mobility enhancement of MoS2 and MoTe2 during dielectric deposition

April 21, 2020
Author(s)
Ju Ying Shang, Michael J. Moody, Jiazhen Chen, Sergiy Krylyuk, Albert Davydov, Tobin J. Marks, Lincoln J. Lauhon
Layered transition metal dichalcogenides (TMDs) and two-dimensional (2D) materials are widely studied as complements to Si complementary metal-oxide-semiconductor technology. Field-effect transistors (FETs) made with 2D materials often exhibit mobilities

Comparable Enhancement of TERS signals from WeSe2 on Chromium and Gold.

April 6, 2020
Author(s)
Albert Davydov, Sergiy Krylyuk, Angela R. Hight Walker, Bojan R. Ilic, Andrey Krayev, Ashish Bhattarai, Alan G. Joly, Matej Velicky, Patrick Z. El-Khoury
Plasmonic tip-sample junctions, at which the incident and scattered optical fields are localized and optimally enhanced, are often exploited to achieve ultrasensitive and highly spatially localized tip-enhanced Raman scattering (TERS). Recent work has

Auto-tuning of double dot devices it in situ with machine learning

March 31, 2020
Author(s)
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, J. P. Dodson, Evan MacQuarrie, D. E. Savage, M. G. Lagally, S N. Coppersmith, Mark A. Eriksson, Jacob Taylor
The current practice of manually tuning quantum dots (QDs) for qubit operation is a relatively time- consuming procedure that is inherently impractical for scaling up and applications. In this work, we report on the \it in situ} implementation of a

Nanoscale MOSFET as a potential Room-Temperature Quantum Current Source

March 31, 2020
Author(s)
Kin P. Cheung, Jason P. Campbell
Nanoscale metal-oxide-semiconductor field-effect-transistors (MOSFETs) with only one defect at the interface can potentially become a single electron turnstile linking frequency and electronic charge to realize the elusive quantized current source. Charge

X-Ray Metrology of Nanowire/ Nanosheet FETs for Advanced Technology Nodes

March 30, 2020
Author(s)
Madhulika S. Korde, Regis J. Kline, Daniel Sunday, Nick Keller, Subhadeep Kal, Cheryl Alix, Aelen Mosden, Alain C. Diebold
The three-dimensional architectures for field effect transistors (FETs) with vertical stacking of Gate-all-Around Nanowires provide a pathway to increased device density and superior electrical performance. However, the transition from research into

Targeted enrichment of 28Si thin films for quantum computing

March 9, 2020
Author(s)
Ke Tang, Hyun S. Kim, Aruna N. Ramanayaka, David S. Simons, Joshua M. Pomeroy
We report on the growth of isotopically enriched 28Si epitaxial films with precisely controlled enrichment levels, ranging from natural abundance ratio of 92.2% all the way to 99.99987 % (0.832 × 10-6 mol/mol 29Si). Isotopically enriched 28Si is regarded

Carrier mobility of silicon by sub-bandgap time-resolved terahertz spectroscopy

February 26, 2020
Author(s)
Timothy J. Magnanelli, Edwin J. Heilweil
Low density charge mobility from below bandgap, two-photon photoexcitation of bulk Silicon (Si) is interrogated using time-resolved terahertz spectroscopy (TRTS). Total charge mobility is measured as a function of excitation frequency and fluence (charge

Use of quantum effects as potential qualifying metrics for "quantum grade silicon"

December 30, 2019
Author(s)
Aruna N. Ramanayaka, Ke Tang, Joseph A. Hagmann, Hyun S. Kim, David S. Simons, Curt A. Richter, Joshua M. Pomeroy
Across solid state quantum information, material deficiencies limit performance through enhanced relaxation, charge defect motion, or isotopic spin noise. While classical measurements of device performance provide cursory guidance, specific qualifying

Appraising the extensibility of optics-based metrology for emerging materials

October 4, 2019
Author(s)
Bryan M. Barnes, Mark-Alexander Henn, Martin Y. Sohn, Hui Zhou, Richard M. Silver
To advance computational capabilities beyond conventional scaling limitations, novel device architectures enabled by emerging materials may be required. Optics-based methodologies, central to modern-day process control, will be pursued by the

Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for 2D Materials Applications

September 13, 2019
Author(s)
Albert Davydov, Sergiy Krylyuk, Kyle J. DiCamillo, Makarand Paranjape, Wendy Shi
An automated technique is presented for mechanically exfoliating single-layer and few-layer transition metal dichalcogenides using controlled shear and normal forces imposed by a parallel plate rheometer. A thin sample that is removed from bulk MoS2 or

A compact, UHV ion source for enriching 28Si and depositing epitaxial thin films

August 22, 2019
Author(s)
Ke Tang, Hyun S. Kim, Aruna N. Ramanayaka, David S. Simons, Joshua M. Pomeroy
An ultra-high-vacuum (UHV) compatible Penning ion source for growing pure, highly enriched 28Si epitaxial thin films is presented. Enriched 28Si is a critical material for quantum information due to the elimination of nuclear spins and, in some cases, must

Streaming Batch Eigenupdates for Hardware Neural Networks

August 6, 2019
Author(s)
Brian D. Hoskins, Matthew W. Daniels, Siyuan Huang, Advait Madhavan, Gina C. Adam, Nikolai B. Zhitenev, Jabez J. McClelland, Mark D. Stiles
Neuromorphic networks based on nanodevices, such as metal oxide memristors, phase change memories, and flash memory cells, have generated considerable interest for their increased energy efficiency and density in comparison to graphics processing units

Materials Science in the AI age: high-throughput library generation, machine learning and a pathway from correlations to the underpinning physics

July 22, 2019
Author(s)
Kamal Choudhary, Aaron G. Kusne, Francesca M. Tavazza, Jason R. Hattrick-Simpers, Rama K. Vasudevan, Apurva Mehta, Ryan Smith, Lukas Vlcek, Sergei V. Kalinin, Maxim Ziatdinov
The use of advanced data analytics, statistical and machine learning approaches (‘AI’) to materials science has experienced a renaissance, driven by advances in computer sciences, availability and access of software and hardware, and a growing realization

Electron Reflectometry for Measuring Nanostructures on Opaque Substrate

July 8, 2019
Author(s)
Lawrence H. Friedman, Wen-Li Wu
Here, we present a method for measuring dimensions of nanostructures using specular reflection of electrons from an opaque surface. Development of this method has been motivated by measurement needs of the semiconductor industry, but it can also be more

A Truth-Matrix View into Unary Computing

June 22, 2019
Author(s)
Advait Madhavan, Georgios Tzimpragos, Mark D. Stiles, Timothy Sherwood
Our community has been exploring Time-of-arrival based codes as a candidate for very low energy information processing. A ``space-time'' algebra has been recently proposed that captures the essential features of such a paradigm. In order to gain some

Electronics Supply Chain Integrity Enabled by Blockchain

June 1, 2019
Author(s)
Xiaolin Xu, Fahim Rahman, Bicky Shakya, Apostol Vassilev, Domenic Forte, Mark Tehranipoor
Electronic systems are ubiquitous today, playing an irreplaceable role in our personal lives as well as in critical infrastructures such as power grid, satellite communication, and public transportation. In the past few decades, the security of software

Induced quantum dot probe for materials characterization

April 19, 2019
Author(s)
Hilary M. Hurst, Yun-Pil Shim, Rusko Ruskov, Charles Tahan
We propose a non-destructive means of characterizing a semiconductor wafer via measuring parameters of an induced quantum dot on the material system of interest with a separate probe chip that can also house the measurement circuitry. We show that a single
Was this page helpful?