Semiconductors—materials such as silicon with tunable electrical conductivity—are the base for most electronics, enabling construction of complex integrated circuits, or chips, that power advanced technologies for healthcare, communications, computing, and transportation, among other applications. Demand for chips is already high, and that demand is growing because of uses in emerging technologies such as artificial intelligence, the internet of things and quantum computing.
In January 2022, the Department of Commerce issued a Request for Information to help guide programs that would be funded by the CHIPS Act that would support a strong domestic semiconductor industry.
NIST has conducted research on semiconductors since the late 1940s, when the field was created by the development of semiconductor devices called crystal diodes for radar during World War II and the invention of the transistor. NIST, then called the National Bureau of Standards (NBS), set up a lab to investigate several related topics, including semiconductors’ electrical conductivity.
The NBS Semiconductor Technology Program was established in 1968 to improve measurement methods, data, reference artifacts, models and theory to enable higher device yields and reliability, lower costs, and improved fabrication and performance. This intensive focus lasted about 20 years.
Today, NIST continues its long history of supporting and collaborating with the semiconductor industry, making its own chips for cutting-edge NIST research and partner institutions, and fulfilling more than a century of commitment to responding to national needs.
According to the Semiconductor Industry Association (SIA), the U.S. semiconductor industry employs over a quarter of a million workers and company sales totaled $208 billion in 2020. Advances in semiconductor technology have been, and continue to be, a linchpin of U.S. economic prosperity and national security.
But there is currently a global shortage of semiconductors due to several factors, including disruptions related to the COVID-19 pandemic and the increased use of semiconductors in cars. The industry is also facing the technical limits of conventional semiconductor materials. This portends the end of “Moore's Law,” which for more than 50 years has held that, thanks to miniaturization, the number of semiconductor devices called transistors that can be packed on a chip doubles about every two years.
There is also a supply chain problem. Americans invented semiconductors and lead the world in chip technology but provide only 12 percent of global semiconductor manufacturing capacity, according to the SIA. Most chip manufacturing occurs in Asia.
Moves are afoot to boost U.S. semiconductor manufacturing, research innovation and supply chain security. Advances in measurement science, standards, materials, instrumentation, testing, and manufacturing capabilities will be needed to help design, develop and manufacture next-generation microelectronics.
The U.S. Department of Commerce is calling for information that will guide programs designed to support a strong domestic semiconductor industry. The Request for Information published on January 24 in the Federal Register asks for input to inform the planning and design of potential programs to incentivize investment in semiconductor manufacturing facilities and associated ecosystems; provide for shared infrastructure to accelerate semiconductor research, development, and prototyping; and support research related to advanced packaging and advanced metrology to ensure a robust domestic semiconductor industry.