NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Jerome Cheron, Dylan Williams, Richard Chamberlin, Miguel Urteaga, Kassi Smith, Nick Jungwirth, Bryan Bosworth, Chris Long, Nate Orloff, Ari Feldman
The indium phosphide (InP) 130 nm double-heterojunction bipolar transistor (DHBT) offers milliwatts of output power and high signal amplification in the lower end of the terahertz frequency band when the transistor is used in a common-base configuration
Historically, the evaluating solder joint failures and solder joint reliability have been done with DC methods using event detectors or data loggers for high-frequency circuits. Direct high-frequency RF measurements of signal paths are potentially more
X. Lyu, M. Si, Pragya Shrestha, Kin (Charles) Cheung, P. D. Ye
In this paper, we review the ultrafast direct measurement on the transient ferroelectric polarization switching in hafnium zirconium oxide with crossbar metal-insulator-metal (MIM) structures including materials development, device fabrication, structure
To design and construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large neural systems capable of general intelligence, the attributes of photonics for communication and
Son T. Le, Seulki Cho, Curt A. Richter, Arvind Balijepalli
Field-effect transistors (FETs) are a powerful tool for sensitive measurements of numerous biomarkers (e.g., proteins, nucleic acids, antigen, etc.) and gaseous species. However, most research in the field has focused on building discrete devices with high
Plasma simulations require accurate yield data to predict the electron flux that is emitted when plasma-exposed surfaces are bombarded by energetic particles. One can measure yields directly using particle beams, but it is impractical to create a separate
Yanxue Hong, Aruna Ramanayaka, Ryan Stein, Joshua M. Pomeroy
The design, fabrication and characterization of single metal gate layer, metal-oxide- semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a
Jirun Sun, Nancy Lin, Joy Dunkers, Sheng Lin-Gibson
One common tissue engineering approach for regenerating or replacing damaged tissues involves a porous polymeric scaffold. The scaffolds serve as the mechanical framework for cell attachment and growth, and generate an environment with features that span
Lee Richter, Tommaso Nicolini, Jokubas Surgailis, Achileas Savva, Guillaume Wantz, Olivier Dautel, Georges Hadiziioannou, Natalie Stingelin
Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing and sensing. While great progress has been achieved, polymer-based mixed conductors frequently experience significant volumetric changes during ion uptake
Zhen Qi, Curtis R. Menyuk, Jason Gorman, Adarsh V. Ganesan
Recently, the mechanical analog of optical frequency combs, phononic frequency combs, have been demonstrated in mechanical resonators and have gained interest since their comb frequencies can be in the range of kilohertz to gigahertz. The physical origin
We extend the reach of temporal computing schemes by developing a memory for multi-channel temporal patterns or "wavefronts." This temporal memory re-purposes conventional one-transistor-one-resistor (1T1R) memristor crossbars for use in an arrival-time
Anthony McFadden, Aranya Goswami, Michael Seas, Corey Rae McRae, Ruichen Zhao, David P. Pappas, Christopher J. Palmstrom
Epitaxial Al/GaAs/Al structures having controlled thickness of high-quality GaAs and pristine interfaces have been fabricated using a wafer-bonding technique. III-V semiconductor/Al structures are grown by molecular beam epitaxy on III-V semiconductor
Ahmad R. Kirmani, Huilang Chen, Christopher Stafford, Emily Bittle, Lee J. Richter
Scalable, solution-deposited metal oxide (MO) thin films could enable low-cost, flexible, large- area electronics; however, the poor morphology of the typically polycrystalline films limits performance. It is demonstrated that optimized coating thickness
Seulki Cho, Son T. Le, Curt A. Richter, Arvind Balijepalli
We demonstrate that single-gated, commercially-sourced, field-effect transistors (FETs) operated with a lock- in amplifier (LIA) under closed-loop control can achieve an average pH resolution of 9x10^-4. This performance represents an 8-fold improvement
Maicol A. Ochoa, James E. Maslar, Herbert S. Bennett
Raman measurements can be utilized as a non-destructive method for determining carrier density in compound semiconductors. Rigorous determination of carrier density involves comparing measured and simulated coupled phonon-plasmon Raman spectra. Theories of
Robin P. Hansen, Amit K. Agrawal, Michael Shur, Jerry Tersoff, Babak Nikoobakht, Yuqin Zong
"Efficiency droop," i.e., a decline in brightness of light-emitting diodes (LEDs) at high electrical currents, limits the performance of all commercial LEDs and has limited the output power of submicrometer LEDs and lasers to nanowatts. We present a fin p
Ana C. de Moraes1, Jan Obrzut, Vinod K. Sangwan, Julia R. Downing, Lindsay E. Chaney, Dinesh K. Patel, Randolph Elmquist, Mark C. Hersam
Solution-processed graphene inks using ethyl cellulose polymer as a binder/stabilizer were blade-coated into large area films. Systematic charge transport characterization showed graphene patterns with high mobility ( 160 cm2 V-1 s-1), low energy gap
Matthew Brubaker, Alexana Roshko, Samuel Berweger, Paul T. Blanchard, Todd E. Harvey, Norman A. Sanford, Kristine Bertness
Lateral piezoresponse force microscopy (L-PFM) is demonstrated as a reliable method for determining the crystallographic polarity of individual, dispersed GaN nanowires that were functional components in electrical test structures. In contrast to PFM
Semiconductor quantum dot (QD) devices experience a modulation of the band structure at the edge of lithographically defined gates due to mechanical strain. This modulation can play a prominent role in the device behavior at low temperatures, where QD
Pragya R. Shrestha, xiao Lyu, Mengwei Si, Jason P. Campbell, Kin P. Cheung, Peide Ye
The polarization switching speed of ferroelectric (FE) hafnium zirconium oxide (HZO) is studied with the device size down to sub-μm in lateral dimension. Ultrafast measurement of transient switching current on metal-ferroelectric-metal (MFM) device with a
We observed at very low drain bias an anomalous acceleration of Negative-bias-instability at room temperature, as if the channel temperature has been raised significantly. The channel width and channel length dependent of this acceleration suggest that in
Dmitry Veksler, gennadi bersuker, A W. Bushmaker, Maribeth Mason, Pragya Shrestha, Kin P. Cheung, Jason Campbell, T Rueckes, L Clevlend, H Luan, D C. Gilmer
Carbon nanotubes (CNT) resistance-change memory devices were assessed for neuromorphic applications under high frequency use conditions by employing the ultra-short (100 ps -10 ns) voltage pulse technique. Under properly selected operation conditions, CNTs
Ming Chun Tang, Yuanyuan Fan, Dounya Barrit, Ruipeng Li, Hoang X. Dang, Siyuan Zhang, Timothy J. Magnanelli, Nhan V. Nguyen, Edwin J. Heilweil, Christina A. Hacker, Detlet-M Smilgies, Kui Zhao, Aram Amassian, Thomas D. Anthopoulos
Perovskite photovoltaics have made extraordinary progress in efficiency and stability in the past few years owing to process and formulation developments like antisolvent drip and mixed-cation mixed-halide compositions. Perovskite solar cells performance
In this paper, we describe the development, and application, of a suite of high-frequency electromagnetic wave (RF) based techniques to probe material and structural changes in copper interconnects in TSV enabled 3-D integrated circuits during high