Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Carrier mobility of silicon by sub-bandgap time-resolved terahertz spectroscopy

Published

Author(s)

Timothy J. Magnanelli, Edwin J. Heilweil

Abstract

Low density charge mobility from below bandgap, two-photon photoexcitation of bulk Silicon (Si) is interrogated using time-resolved terahertz spectroscopy (TRTS). Total charge mobility is measured as a function of excitation frequency and fluence (charge carrier density), cut angle, and innate doping levels. Frequency dependent complex photoconductivities are extracted using the Drude model to obtain average and DC limit mobility and carrier scattering lifetimes. These dynamic parameters are compared to values from contact-based Hall, above bandgap photoexcitation, and comparable gallium arsenide (GaAs) measurements. Mobilities are shown to increase beyond Hall values at low carrier densities and are modestly higher with increasing dopant density. The former occurs in part from below bandgap photoexcitation exhibiting abnormally small (faster) scattering lifetimes, while both reflect unique conduction characteristics at lowest (ca. > 2x1012 cm-3) carrier densities achieved through photodoping.
Citation
Optics Express
Volume
28
Issue
5

Keywords

ultrafast spectroscopy, terahertz, semiconductor, silicon, mobility
Created February 26, 2020, Updated April 26, 2020