Nanoscale Reliability Group

The Nanoscale Reliability Group develops and disseminates science, standards, and technology for high-resolution measurements of material structure, chemistry, and physical properties, to ensure reliability of materials and devices with critical dimensions in the micrometer to nanometer regime.

The performance of advanced, reliable engineering materials requires that the proper atoms are in the correct place within the material, and that they are displaying the properties we intend.  Innovative metrologies are developed in the realms of electron, ion, and scanned probe microscopies, to identify and locate atomic species, and to determine physical responses of materials. Test structures, measurement methods, and in operando approaches are developed to measure performance of complex material systems and geometries with high spatial resolution, enabling new reliability physics to be applied to nanoscale structures for computing, structural material, and energy applications. We integrate our material structure metrologies with material performance and reliability assessments. 


NIST encourages patent protection on inventions when a patent would further the interests of U.S. manufacturing, increase the potential for current or future commercialization or use of the technology, would likely to lead to a license, would have a positive impact on a new field of science or technology and/or the visibility and vitality of NIST, or would further the goals of collaborative agreements.

Although patents are issued in the name of the inventor, the rights to inventions resulting from government work belong to the government. NIST's Technology Partnerships Office negotiates licensing of patented NIST technology.

Sample holder, detector mask, and scope system for analytical transmission scanning electron microscopy
9,970,859; 9,746,415

Imaging spectrometer for extreme ultraviolet atom probe tomography
10,153,144; 9,899,197

Electron vibrometer for atomic force microscopy

Recent Group Highlights

Researchers from the Nanoscale Reliability Group have developed a new atomic force microscopy (AFM) method to measure the development of physical properties during their formation during 3-D printing. Sample-coupled-resonance photorheology (SCRPR) spatially  resolves the evolution of properties over time scales of approximately 10 millisecond. For details, see New NIST Method Measures 3D Polymer Processing Precisely.

News and Updates

Projects and Programs


Group Leader