Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 151 - 175 of 269

PHOTONIC THERMOMETRY: UPENDING 100 YEAR-OLD PARADIGM IN TEMPERATURE METROLOGY

August 1, 2019
Author(s)
Zeeshan Ahmed, Nikolai N. Klimov, Thomas P. Purdy, Tobias K. Herman, Kevin O. Douglass, Ryan P. Fitzgerald
For the past century, industrial temperature measurements have relied on resistance measurement of a thin metal wire or thin metal film whose resistance varies with temperature. Today’s resistance thermometers can routinely measure temperatures with

Efficient telecom-to-visible spectral translation through ultra-low power nonlinear nanophotonics

June 24, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Qing Li, Daron Westly, Anshuman Singh, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to connect the telecommunications band with visible and short near-infrared

pyLLE: a Fast and User Friendly Lugiato-Lefever Equation Solver

May 24, 2019
Author(s)
Gregory T. Moille, Qing Li, Xiyuan Lu, Kartik Srinivasan
The Lugiato-Lefever Equation (LLE), first developed to provide a description of spatial dissipative structures in optical systems, has recently made a significant impact in the integrated photonics community, where it has been adopted to help understand

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

May 20, 2019
Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has

Ultrafast Optical Pulse Shaping using Dielectric Metasurfaces

May 2, 2019
Author(s)
Shawn M. Divitt, Wenqi Zhu, Cheng Zhang, Henri Lezec, Amit Agrawal
Simultaneous control of individual frequency-comb lines, and their modulation at the repetition-rate of an ultrafast laser represents the ultimate limit of optical pulse shaping. Remarkable progress in mode-locked lasers and chirped pulse amplifiers

A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability

April 22, 2019
Author(s)
Jin Liu, Rongbin Su, Yuming Wei, Beimeng Yao, Saimon Filipe Covre da Silva, Ying Yu, Jake Iles-Smith, Kartik Srinivasan, Armando Rastelli, Juntao Li, Xuehua Wang
The generation of high-quality entangled photon pairs has been being a long-sought goal in modern quan-tum communication and computation. To date, the most widely-used entangled photon pairs are gener-ated from spontaneous parametric downconversion, a

UV LEDs Based on p-i-n Core-Shell AlGaN/GaN Nanowire Heterostructures Grown by N-polar Selective Area Epitaxy

March 20, 2019
Author(s)
Matthew Brubaker, Kristen Genter, Alexana Roshko, Paul T. Blanchard, Bryan T. Spann, Todd E. Harvey, Kris A. Bertness
Ultraviolet light-emitting diodes (UV LEDs) fabricated from N-polar AlGaN/GaN core-shell nanowires with p-i-n structure produced electroluminescence at 365 nm with 5x higher intensities than similar GaN homojunction LEDs. The improved characteristics were

Metrological Assessment of Single-Walled Carbon Nanotube Materials by Optical Methods

March 1, 2019
Author(s)
Jeffrey A. Fagan, Angela R. Hight Walker, Ming Zheng, Lefebvre Jacques, Paul Finnie
This chapter discusses the metrology – i.e. the science of measurement – of single-wall carbon nanotubes (SWCNTs) with optical methods. Professor Mildred (“Millie”) Dresselhaus was a strong advocate for nanotube metrology and a pioneer in carbon nanotube

Chip-integrated visible-telecom entangled photon pair source for quantum communication

January 21, 2019
Author(s)
Xiyuan Lu, Qing Li, Daron Westly, Gregory Moille, Anshuman Singh, Vikas Anant, Kartik Srinivasan
Photon pair sources are fundamental blocks for quantum entanglement and quantum communication. Recent studies in silicon photonics have documented promising characteristics for photon pair sources within the telecommunications band, including sub-milliwatt

Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator

December 14, 2018
Author(s)
S G. Carter, A S. Bracker, Garnett W. Bryant, M Kim, C S. Kim, M Zalalutdinov, M. K. Yakes, C Czarnocki, J Casara, M Scheibner, D Gammon
We demonstrate strain-induced coupling between a hole spin in a quantum dot and mechanical motion of a cantilever. The optical transitions of quantum dots integrated into GaAs mechanical resonators are measured synchronously with the motion of the driven

Axisymmetric scalable magneto-gravitational trap for diamagnetic particle levitation

December 11, 2018
Author(s)
Kristine A. Bertness, John P. Houlton, Max L. Chen, Matthew D. Brubaker, Charles T. Rogers
We report an axisymmetric magnetic trap design for levitating diamagnetic particles. The magnetic traps each consist of two iron pole pieces passively driven by a neodymium iron boron (NdFeB) permanent magnet. The magnetic field configuration between the

Metal Organic Framework-Coated Optical VOC Gas Sensor

November 8, 2018
Author(s)
Yangyang Zhao, Mona E. Zaghloul, Yigal Lilach, Kurt Benkstein, Stephen Semancik
We report a metal organic framework (MOF)-coated nanohole array based plasmonic gas sensor. Arrays of 200 nm circular holes are fabricated with a period of 400 nm. 10 nm thick MOF is coated on the sensor platform to provide high sensitivity and real-time

Fabrication and Testing of Photonic Thermometers

October 24, 2018
Author(s)
Nikolai Klimov, Zeeshan Ahmed
In recent years, a push for developing novel silicon photonic devices for telecommunications has generated a vast knowledge base that is now being leveraged for developing sophisticated photonic sensors. Silicon photonic sensors seek to exploit the strong

Photonic waveguide to free-space Gaussian beam extreme mode converter

October 10, 2018
Author(s)
Sangsik Kim, Daron Westly, Brian J. Roxworthy, Qing Li, Alexander Yulaev, Kartik Srinivasan, Vladimir Aksyuk
Integration of photonic chips with atomic, micromechanical, chemical and biological systems can advance science and open many possibilities in chip-scale devices and technology. Compact photonic structures for direct coupling of light between high-index

Assessing Radiation Hardness of Silicon Photonic Sensors.

August 13, 2018
Author(s)
Zeeshan Ahmed, Lonnie T. Cumberland, Ronald E. Tosh, Nikolai N. Klimov, Ileana M. Pazos, Ryan P. Fitzgerald
In recent years silicon photonic platforms have undergone rapid maturation enabling not only optical communication but complex scientific experiments ranging from sensors applications to fundamental physics inquiries. There is con-siderable interest in

Determination of polypeptide conformation in water with nanoscale resolution in water

July 24, 2018
Author(s)
Georg Ramer, Francesco Ruggeri, Aviad Levin, Toumas Knowles, Andrea Centrone
The conformational structure and folding of proteins are central to many biological processes. However, misfolding of proteins and peptides can lead to toxic aggregates that are involved in Alzheimer’s and other neurodegenerative disorders. Methods to

Subnanometer localization accuracy in widefield optical microscopy

July 11, 2018
Author(s)
Craig R. Copeland, Jon C. Geist, Craig D. McGray, Vladimir A. Aksyuk, James A. Liddle, Bojan R. Ilic, Samuel M. Stavis
The common assumption that precision is the limit of accuracy in localization microscopy and the typical absence of comprehensive calibration of optical microscopes lead to a widespread issue - overconfidence in measurement results with nanoscale

Improving dielectric nanoresonator array coatings for solar cells

June 19, 2018
Author(s)
Dongheon Ha, Nikolai B. Zhitenev
We introduce single layer silicon dioxide (SiO2) nanosphere arrays as antireflection coatings (ARCs) on a gallium arsenide (GaAs) solar cell. We make macro- and nanoscale experiments and finite-difference time-domain (FDTD) calculations to prove the
Was this page helpful?