Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Ultrafast Optical Pulse Shaping using Dielectric Metasurfaces

Published

Author(s)

Shawn M. Divitt, Wenqi Zhu, Cheng Zhang, Henri J. Lezec, Amit K. Agrawal

Abstract

Simultaneous control of individual frequency-comb lines, and their modulation at the repetition-rate of an ultrafast laser represents the ultimate limit of optical pulse shaping. Remarkable progress in mode-locked lasers and chirped pulse amplifiers promising to reach atto- and zeptosecond pulse lengths with peak powers approaching exa- and even zettawatt levels, will require fundamentally new pulse modulation strategies capable of supporting, simultaneously, the enormous bandwidth and power associated with these pulses while maintaining high spectral resolution. Here, we offer the first experimental demonstration of optical pulse shaping using a dielectric metasurface able to simultaneously control the amplitude, phase and polarization of the various frequency components of an ultrafast pulse. Dielectric metasurfaces offer a low cost, high resolution, high diffraction efficiency, high damage threshold and lithography- friendly alternative to commercial spatial-light-modulators used for controlling ultrafast pulses. By offering the potential for complete spatio-temporal control of optical fields, metasurface based pulse-shapers are expected to have significant impact in the field of ultrafast science and technology.
Citation
Science Magazine
Volume
364
Issue
6443

Keywords

Metamaterials, Ultrafast Optics.
Created May 2, 2019, Updated January 27, 2020