NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Ultra-sensitive mid-infrared emission spectrometer using a WSi superconducting nanowire single-photon detector
Published
Author(s)
Varun Verma, Martin Stevens, Richard Mirin, Sae Woo Nam, Li Chen, Dirk Schwarzer, Jascha A. Lau
Abstract
We evaluate the performance of a mid-infrared emission spectrometer operating at wavelengths between 2 and 7 υm based on an amorphous tungsten silicide (a-WSi) superconducting nanowire single-photon detector (SNSPD). To demonstrate the spectrometer's capabilities, we perform laser induced fluorescence spectroscopy of surface adsorbates with sub-monolayer sensitivity and sub-nanosecond temporal resolution. The a-WSi SNSPD shows saturated internal quantum efficiency at wavelengths between 1.5 υm and 2.5 υm, where the absolute internal quantum efficiency is found to be close to unity. The internal quantum efficiency remains above 10 % at wavelengths as long as 6 υm. We determine the noise equivalent power (NEP) of the current SNSPD detector system from 2 υm (4×10^-16^ W/√Hz) to 6 υm (5×10^-15^ W/√Hz) - these results are not yet limited by detector noise but rather from background radiation, which is largest near 4.5 υm (NEP=1×10^-14^ W/√Hz). This is nevertheless several orders of magnitude lower than semiconductor-based detectors typically used in this wavelength range. The temporal response is also markedly better. We discuss possible future improvements of the SNSPD-based infrared emission spectrometer and its potential applications in molecular science.
Verma, V.
, Stevens, M.
, Mirin, R.
, Nam, S.
, Chen, L.
, Schwarzer, D.
and Lau, J.
(2018),
Ultra-sensitive mid-infrared emission spectrometer using a WSi superconducting nanowire single-photon detector, Optica, [online], https://doi.org/10.1364/OE.26.014859, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=925017
(Accessed October 20, 2025)