Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 176 - 200 of 266

Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures

March 14, 2018
Author(s)
Lisa Brown, Marcelo I. Davanco, Zhiyuan Sun, Andrey Kretinin, Yiguo Chen, Joseph R. Matson, Igor Vurgaftman, Nicholas Sharac, Alexander Giles, Michael Fogler, Takashi Taniguchi, Kenji Watanabe, Kostya Novoselov, Stefan Maier, Andrea Centrone, Joshua D. Caldwell
Because of its inherent crystal anisotropy, hexagonal boron nitride (hBN) supports naturally hyperbolic phonon polaritons, i.e. polaritons that can propagate with arbitrarily large wavevectors within the material volume, thereby enabling optical

Towards Replacing Resistance Thermometry with Photonic Thermometry

December 6, 2017
Author(s)
Nikolai Klimov, Thomas P. Purdy, Zeeshan Ahmed
Resistance thermometry provides a time-tested method for taking temperature measurements that has been painstakingly developed over the last century. However, fundamental limits to resistance-based approaches along with a desire to reduce the cost of

Plasma nanotexturing of silicon surfaces for photovoltaics applications: Influence of initial surface finish on the evolution of topographical and optical properties

November 27, 2017
Author(s)
Guillaume Fischer, Etienne Drahi, Martin Foldyna, Thomas Germer, Erik V. Johnson
Using a plasma to generate a surface texture with feature sizes on the order of nanometers ("nanotexturing") is a promising technique being considered for application in thin, high- efficiency crystalline silicon solar cells. This study investigates the

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

October 12, 2017
Author(s)
Marcelo I. Davanco, Liu Jin, Luca Sapienza, Chen-Zhao Zhang, Jose Vinicius De Miranda Cardoso, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Liu Liu, Kartik A. Srinivasan
Photonic integration is establishing itself as an enabling technology for photonic quantum science, offering considerably greater scalability, stability, and functionality than traditional bulk optics. Here, we develop a scalable, heterogeneous III-V /

Aperture Arrays for Subnanometer Calibration of Optical Microscopes

September 28, 2017
Author(s)
Craig Copeland, Craig McGray, Jon Geist, James Alexander Liddle, Robert Ilic, Samuel Stavis
We fabricate and test subresolution aperture arrays as calibration devices for optical localization microscopy. An array pitch with a relative uncertainty of approximately three parts in ten thousand enables magnification calibration with subnanometer

Nanophotonic atomic force microscope transducers enable chemical composition and thermal conductivity measurements at the nanoscale

September 13, 2017
Author(s)
Jungseok Chae, Sangmin An, Georg Ramer, Vitalie Stavila, Glenn Holland, Yohan Yoon, Alec Talin, Mark Allendorf, Vladimir Aksyuk, Andrea Centrone
The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct detection, urging measurement innovation. Integrated cavity-optomechanics is revolutionizing

Quantum Light Turned on by Nanotube Chemistry

September 1, 2017
Author(s)
Ming Zheng, Kartik A. Srinivasan
Room-temperature single-photon emission at telecom wavelengths is realized by organic color centers chemically implanted on chirality-defined single-wall carbon nanotubes.

Impact of Varying Vacuum Levels on Self-Heating in Photonic Thermometers

July 1, 2017
Author(s)
Zeeshan Ahmed, Nikolai N. Klimov, James R. Hands, James A. Fedchak
Here we examine the impact of vacuum levels on self-heating in photonic crystal cavity thermometers. Our results suggest that background gas pressure has a negligible impact on self- heating correction to the temperature-wavelength calibration.

Bandwidth-enhanced superconducting nanowire single photon detectors for telecom wavelengths

May 13, 2017
Author(s)
Stephan Krapick, Marina Hesselberg, Varun Verma, Igor Vayshenker, Sae Woo Nam, Richard Mirin
We present a single-photon detector providing system detection efficiencies of at least (86.7 ± 0.9) % from 1450 nm to 1640 nm. It comprises bilayer superconducting WSi nanowires in conjunction with all-dielectric structures for optical impedance matching

Cascaded emission of single photons from the biexciton in monolayered WSe2

November 10, 2016
Author(s)
Yu-Ming He, Oliver Iff, Nils Lundt, Vasilij Baumann, Marcelo I. Davanco, Kartik Srinivasan, Sven Hofling, Christian Schneider
Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state. They benefit from the enormous coulomb correlations between electrons and holes, as a result of reduced dielectric screening

Ring Resonator Thermometry

October 31, 2016
Author(s)
Nikolai Klimov, Zeeshan Ahmed
We report on our study of a temperature response of ring resonator based sensors and their interchangeability over a wide temperature range. Our results suggest that with a proper fabrication process control the interchangeability in photonic thermometers
Was this page helpful?