Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Dale E. Newbury (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 112

The Development of Microcalorimeter EDS Arrays

November 1, 2002
Author(s)
Kent D. Irwin, James A. Beall, Steven Deiker, Gene C. Hilton, L. King, Sae Woo Nam, Dale Newbury, Carl D. Reintsema, John A. Small, Leila R. Vale
High-energy-resolution cryogenic microcalorimeters are a powerful new tool for x-ray microanalysis. With demonstrated energy resolution 20 times better than with conventional semiconductor EDS, microcalorimeters are useful in applications such as nanoscale

Energy Dispersive X-ray spectromety by Microcalorimetry for the SEM

January 1, 2002
Author(s)
Dale E. Newbury, David A. Wollman, Sae Woo Nam, Gene C. Hilton, Kent D. Irwin, John A. Small, John M. Martinis
Analytical x-ray spectrometry for electron beam instruments has been significantly advanced with the development of the NIST microcalorimeter energy dispersive x-ray spectrometer (mcal EDS). The mcal EDS operates by measuring the temperature rise when a

Progress Towards Arrays of Microcalorimeter X-ray Detectors

September 1, 2001
Author(s)
Sae Woo Nam, David A. Wollman, Dale Newbury, Gene C. Hilton, Kent D. Irwin, David A. Rudman, Steven Deiker, Norman F. Bergren, John M. Martinis
The high performance of single-pixel microcalorimeter EDS (υcal EDS) has been shown to be very useful for a variety of microanalysis cases. The primary advantage of υcal EDS over conventional EDS is that factor of 25 improvement in energy resolution (3 eV

Low Voltage Microanalysis using Microcalorimeter EDS

January 1, 2001
Author(s)
David A. Wollman, Sae Woo Nam, Gene C. Hilton, Kent D. Irwin, David A. Rudman, Norman F. Bergren, Steven Deiker, John M. Martinis, Martin Huber, Dale Newbury
We present the current performance of the prototype high-resolution microcalorimeter energy-dispersive spectrometer (υcal EDS) developed at NIST for x-ray microanalysis. In particular, the low-energy υcal EDS designed for operation in the energy range from

Superconducting Transition-Edge-Microcalorimeter X-ray Spectrometer with 2 eV Energy Resolution at 1.5 keV

December 31, 2000
Author(s)
David A. Wollman, Sae Woo Nam, Dale Newbury, Gene C. Hilton, Kent D. Irwin, Norman F. Bergren, Steven Deiker, David A. Rudman, John M. Martinis
We describe the operation and performance of a prototype microcalorimeter ?energy-dispersive? (nondispersive) x-ray spectrometer (mcal EDS) developed at NIST for use in x-ray microanalysis and x-ray astronomy. The low-energy microcalorimeter detector

Measures for Spectral Quality in Low-Voltage X-Ray Microanalysis

November 1, 2000
Author(s)
Dale E. Newbury
Characteristic x-ray production with energetic electrons depends strongly on the overvoltage, the ratio of the incident beam energy to the critical excitation energy for the atomic species of interest. Low voltage x-ray microanalysis (beam energy < 5 keV)

Microcalorimeter Energy Dispersive X-ray Spectrometer for Low Voltage Microanalysis

November 1, 2000
Author(s)
David A. Wollman, John M. Martinis, Sae Woo Nam, Gene C. Hilton, Kent D. Irwin, David A. Rudman, Norman F. Bergren, Steven Deiker, Martin Huber, Dale Newbury
Improved x-ray detector technology continues to be a critical metrological need in the semiconductor industry for contaminant particle analysis 1,2 and for high-spatial-resolution x-ray microanalysis using low-beam-voltage field-emission scanning electron

Microcalorimeter EDS: Benefits and Drawbacks

August 1, 2000
Author(s)
David A. Wollman, Dale Newbury, Sae Woo Nam, Gene C. Hilton, Kent D. Irwin, David A. Rudman, Steven Deiker, Norman F. Bergren, John M. Martinis
The commercial introduction of high-count-rate, near-room-temperature silicon drift detectors (presently available) and high-energy-resolution cryogenic microcalorimeters (forthcoming) is an exciting development in x-ray microanalysis, in which detector

Improving the Accuracy of Particle Analysis

July 1, 2000
Author(s)
John A. Small, J R. Michael, Dale E. Newbury
Historically the procedures for the quantitative X-ray analysis of particles in the electron probe have been similar to the methods used for bulk electron probe samples.The main difference was that corrections had to be made to the experimental k-ratios or

Microcalorimeter Energy-Dispersive Spectrometry Using a Low Voltage Scanning Electron Microscope

July 1, 2000
Author(s)
David A. Wollman, Sae Woo Nam, Gene C. Hilton, Kent D. Irwin, Norman F. Bergren, David A. Rudman, John M. Martinis, Dale Newbury
We describe the current performance of the prototype microcalorimeter energy-dispersive spectrometer (5cal EDS) developed at NIST for X-ray microanalysis. We show that the low-energy 5cal EDS, designed for operation in the energy range 0.2-2 keV, offers

The Approaching Revolution in X-Ray Microanalysis: The Microcalorimeter Energy Dispersive Spectrometer

June 1, 2000
Author(s)
Dale E. Newbury, David A. Wollman, Gene C. Hilton, Kent D. Irwin, Norman F. Bergren, David A. Rudman, John M. Martinis
We have developed a high-resolution energy-dispersive x-ray spectrometer (EDS) based on cryogenic microcalorimeter x-ray detectors for use in x-ray microanalysis. With an energy resolution of 3 eV at 1.5 keV, count rate of {approximately} 500 s -1, and an

Journal of Research of the National Institute of Standards and Technology

January 1, 2000
Author(s)
Dale E. Newbury, Ryna B. Marinenko
The Journal of Research of the National Institute of Standards and Technology reports NIST research and development in those disciplines of the physical and engineering sciences in which the Institute is active. These include physics, chemistry

Quantitative Electron Probe Microanalysis of Rough, Bulk Samples

January 1, 2000
Author(s)
Dale E. Newbury
Surface roughness degrades the accuracy of quantitative electron probe x-ray microanalysis through the action of geometric effects on x-ray production and absorption. Measurements of rough surfaces produced on NIST microhomogeneous SRMs will be used to

Energy Dispersive X-Ray Spectrometry With the Transition Edge Sensor Microcalorimeter: A Revolutionary Advance in Materials Microanalysis

December 1, 1999
Author(s)
Dale E. Newbury, David A. Wollman, Kent D. Irwin, Gene C. Hilton, John M. Martinis
The NIST microcalorimeter energy dispersive x-ray spectrometer provides important advances in x-ray spectrometry. The high spectral resolution, approaching 2 eV for photon energies below 2 keV, the wide photon energy coverage, 250 eV to 10 keV, and the