Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 25

Performance of a Kinetic-Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers

April 5, 2022
Author(s)
Maxime Malnou, Joe Aumentado, Michael Vissers, Jordan Wheeler, Johannes Hubmayr, Joel Ullom, Jiansong Gao
Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4\,K, typically a high-electron mobility transistor (HEMT). Despite its remarkable noise performance, a conventional HEMT dissipates several

Sub-kelvin thermometer for on-chip measurements of microwave devices utilizing two-level systems in superconducting microresonators

November 13, 2021
Author(s)
Jordan Wheeler, Michael Vissers, Maxime Malnou, Johannes Hubmayr, Joel Ullom, Jiansong Gao
The design, implementation, and sensitivity of a new microwave multiplexable superconducting resonator thermometer based on two-level-systems are presented. The thermometer operates from 1 K to 50 mK and has the potential to measure down to 5 mK. The

Efficient and low-backaction measurement of a superconducting qubit

March 3, 2021
Author(s)
Eric Rosenthal, Christian M. Schneider, Maxime Malnou, Ziyi Zhao, Felix Leditzky, Benjamin Chapman, Waltraut Wustmann, Xizheng Ma, Daniel A. Palken, Leila R. Vale, Gene C. Hilton, Jiansong Gao, Graeme Smith, Gerhard Kirchmair, Konrad Lehnert

Materials loss measurements using superconducting microwave resonators

June 9, 2020
Author(s)
Corey Rae H. McRae, Haozhi Wang, Jiansong Gao, Michael R. Vissers, Teresa Brecht, A Dunsworth, David P. Pappas, J. Mutus
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identification

Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors

November 8, 2018
Author(s)
Christopher M. McKenney, Jason E. Austermann, James A. Beall, Bradley J. Dober, Shannon M. Duff, Jiansong Gao, Gene C. Hilton, Johannes Hubmayr, Dale Li, Joel N. Ullom, Jeffrey L. Van Lanen, Michael R. Vissers
We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the

Low-Temperature Detectors for CMB Imaging Arrays

August 3, 2018
Author(s)
Johannes Hubmayr, Jason E. Austermann, James A. Beall, Daniel T. Becker, Bradley J. Dober, Shannon M. Duff, Jiansong Gao, Gene C. Hilton, Christopher M. McKenney, Joel N. Ullom, Jeffrey L. Van Lanen, Michael R. Vissers
We review advances in low-temperature detector (LTD) arrays for cosmic microwave background (CMB) polarization experiments, with a particular emphasis on imaging arrays. We briefly motivate the science case, which has spurred a large number of independent

Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

March 8, 2018
Author(s)
Jason Austermann, James A. Beall, Sean A. Bryan, Bradley Dober, Jiansong Gao, Gene C. Hilton, Johannes Hubmayr, Phillip Mauskopf, Christopher M. McKenney, S M. Simon, Joel Ullom, Michael Vissers, G W. Wilson
Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the

Superconducting micro-resonator arrays with ideal frequency spacing

December 20, 2017
Author(s)
Xiangliang Liu, Weijie Guo, Y Wang, M Dai, L F. Wei , Bradley J. Dober, Christopher M. McKenney, Gene C. Hilton, Johannes Hubmayr, Jason E. Austermann, Joel Ullom, Jiansong Gao, Michael Vissers
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the

Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays

July 12, 2017
Author(s)
Jiansong Gao, Xiangliang Liu, W Guo, Wei L.F., Christopher M. McKenney, Bradley J. Dober, Tasha Billings, Johannes Hubmayr
We present a cryogenic wafer mapper based on light emitting diodes (LEDs) for mapping a large microwave kinetic inductance detector (MKID) array. In this scheme, an array of LEDs, addressed by DC wires and collimated through horns onto the detectors, are

Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors

May 22, 2017
Author(s)
Jiansong Gao, Michael R. Vissers, Joel N. Ullom, Johannes Hubmayr, Joseph W. Fowler, Leila R. Vale, Weijie Guo
We demonstrate photon counting at 1550~nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature $T_{c} \sim$ 1.4~K. The detector has a lump-element design with a

Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

April 11, 2017
Author(s)
Jiansong Gao, Saptarshi Chaudhuri, Dale Li, Kent D. Irwin, Clint Bockstiegel, Weijie Guo, Xiangliang Liu, Johannes Hubmayr
We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films and an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing two different phase matching

Frequency-tunable Superconducting Resonators via Nonlinear Kinetic Inductance

August 13, 2015
Author(s)
Michael Vissers, Johannes Hubmayr, Jiansong Gao, Martin Sandberg, Saptarshi Chaudhuri, Clint Bockstiegel
We have designed, fabricated and tested a frequency-tunable high-Q superconducting resonator made from niobium titanium nitride film. The frequency tunability is achieved by injecting a DC current through a special current-directing circuit into the

Properties of TiN for Detector and Amplifier Applications

February 8, 2014
Author(s)
Jiansong Gao, Michael R. Vissers, Martin O. Sandberg, Dale Li, Hsiao-Mei Cho, Clint Bockstiegel, Ben Mazin, Henry G. Leduc, Saptarshi Chaudhuri, David P. Pappas, K D. Irwin
We have experimentally explored and carefully characterized the important properties of TiN, including the resistivity, nonlinear kinetic inductance, the anomalous electro-dynamical response, and the two-level-system induced frequency shift and noise. We

High resolution gamma-ray spectroscopy with a microwave-multiplexed TES array

November 11, 2013
Author(s)
Omid Noroozian, John A. Mates, Douglas A. Bennett, Justus A. Brevik, Joseph W. Fowler, Jiansong Gao, Robert D. Horansky, Kent D. Irwin, Daniel R. Schmidt, Joel N. Ullom, Zhao Kang
We demonstrate the first gamma-ray spectroscopy with a microwave-multiplexed two-pixel TES(transition-edge sensor) array. We measured a $^{153}$Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum (FWHM) at 97 keV and an

Optimized superconducting detectors using the proximity effect in Ti/TiN multilayers

June 14, 2013
Author(s)
David P. Pappas, Michael R. Vissers, Jiansong Gao, Martin O. Sandberg, David S. Wisbey, Kent D. Irwin
We apply the superconducting proximity effect in TiN/Ti multi-layers films to tune the critical temperature, $T_C$ (to within 10 mK) with high uniformity (less than 15 mK spread) across a 75 mm wafer. Reproducible $T_C$'s are obtained from 0.8 - 2.5 K

Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable TC Titanium Nitride Growth

September 21, 2012
Author(s)
Michael R. Vissers, Jiansong Gao, Jeffrey S. Kline, Martin O. Sandberg, Martin P. Weides, David S. Wisbey, David P. Pappas
The structural and electrical properties of Ti-N films deposited by reactive sputtering depend on their growth parameters, in particular the Ar:N2 gas ratio. We show that the nitrogen percentage changes the crystallographic phase of the film progressively

Reduced microwave loss in trenched superconducting coplanar waveguides

February 20, 2012
Author(s)
Michael R. Vissers, Jeffrey S. Kline, Jiansong Gao, David S. Wisbey, David P. Pappas
Low loss TiN resonators were fabricated on 3" intrinsic Si substrates. By exploiting the etch rate anisotropy in a parallel plate reactive ion etch, otherwise identical coplanar waveguides with gaps of varying depth were created in the same TiN film within

Strongly quadrature-dependent noise in superconducting microresonators measured at the vacuum-noise limit

June 9, 2011
Author(s)
Jiansong Gao, Kent D. Irwin, Gene C. Hilton, John A. Mates, Daniel R. Schmidt, Leila R. Vale, Konrad W. Lehnert, Francois Mallet, Jonas Zmuidzinas
We report noise measurement of superconducting micro-resonators with a Josephson parametric amplifier. These resonators show significant amount of frequency noise caused by surface two-level systems. However, in the dissipation quadrature, no excess noise

Two Level System Loss in Superconducting Microwave Resonators

January 13, 2011
Author(s)
David P. Pappas, Michael R. Vissers, David S. Wisbey, Jeffrey S. Kline, Jiansong Gao
High quality factor, i.e. low loss, resonators are important for quantum information storage and addressing. In this work we study the resonance frequency and loss in superconducting coplanar waveguide resonators as a function of temperature and power. We

Low loss superconducting titanium nitride coplanar waveguide resonators

December 9, 2010
Author(s)
Michael Vissers, Jiansong Gao, David S. Wisbey, David P. Pappas, C. C. Tsuei, A. D. Corcoles, Matthias Steffen
Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures in

Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides

November 8, 2010
Author(s)
David S. Wisbey, Jiansong Gao, Fabio C. da Silva, Jeffrey S. Kline, Michael Vissers, David P. Pappas, Leila R. Vale
Microscopic two-level systems (TLSs) are known to contribute to loss in resonant superconducting microwave circuits. This loss increases at low power and temperatures as the TLSs become unsaturated. We find that the loss is dependent on both the substrate

Thin lm dielectric microstrip kinetic inductance detectors

March 8, 2010
Author(s)
David P. Pappas, Jiansong Gao, Benjamin Mazin, Daniel Sank, Erik Lucero, John M. Martinis, Andrew Merrill, Sunil Golwala, David Moore, Jonas Zmuidzinas
Microwave Kinetic Inductance Detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present theory and measurements on a new type of MKID based on a microstrip

Large-Area TKIDs for a New Generation of Neutron Beta Decay Experiments

January 1, 2001
Author(s)
Elizabeth Scott, Jimmy P. Caylor, Maynard S. Dewey, Jiansong Gao, Colin A. Heikes, Shannon Hoogerheide, Hans Pieter Mumm, Jeffrey S. Nico, Joel Ullom, Michael Vissers
Nuclear physics has long played a central role in our efforts to better understand the natural world. Several experiments are well positioned to improve limits in searches for physics Beyond the Standard Model (BSM). Many of the experiments in nuclear