NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors
Published
Author(s)
Jiansong Gao, Michael R. Vissers, Joel N. Ullom, Johannes Hubmayr, Joseph W. Fowler, Leila R. Vale, Weijie Guo
Abstract
We demonstrate photon counting at 1550~nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature $T_{c} \sim$ 1.4~K. The detector has a lump-element design with a large interdigitated capacitor (IDC) covered by aluminum and an inductive photon absorber whose volume ranges from 0.4~$\mu$m$^3$ to 20~$\mu$m$^3$. We find that the energy resolution improves as the absorber volume is reduced. We have achieved a energy resolution of 0.22~eV and resolved up to 7 photon per pulse, both greatly improved from previously reported results at 1550~nm wavelength using MKID. Further improvements are possible by optimizing the optical coupling to maximize the photon absorption into the inductive absorber.
Gao, J.
, Vissers, M.
, Ullom, J.
, Hubmayr, J.
, Fowler, J.
, Vale, L.
and Guo, W.
(2017),
Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors, Applied Physics Letters
(Accessed October 8, 2025)