Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Vladimir Aksyuk (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 144

Overcoming thermo-optical dynamics in broadband nanophotonic sensing

July 7, 2021
Author(s)
Mingkang Wang, Diego J. Perez, Vladimir Aksyuk
Advances in integrated photonics open exciting opportunities for batch-fabricated optical nano- electro-mechanical sensors with ultra-high sensitivities and bandwidths enabled by cavity optomechanics. However, heat from the amplified optical intensity

Interfacing Photonics to Free-Space via Large-area Inverse-designed Diffraction Elements and Metasurfaces

June 6, 2021
Author(s)
Alexander Yulaev, Wenqi Zhu, Chad Ropp, Daron Westly, Gregory Simelgor, Cheng Zhang, Henri Lezec, Amit Agrawal, Vladimir Aksyuk
Large-area inverse-designed photonic gratings and optical metasurfaces directly couple waveguides to wide free-space modes with custom wavefronts and polarizations in the visible and near-infrared. Design, modeling methods and experimental results are

Meta-grating outcouplers for optimized beam shaping in the visible

May 10, 2021
Author(s)
Chad Ropp, Alexander Yulaev, Daron Westly, Gregory Simelgor, Vladimir Aksyuk
Accurate coupling between optical modes at the interface between photonic chips and free space is required for the development of many on-chip devices. This control is critical in quantum technologies where large-diameter beams with designed mode profiles

Magneto-optical trapping using planar optics

January 29, 2021
Author(s)
William McGehee, Wenqi Zhu, Daniel Barker, Daron Westly, Alexander Yulaev, Nikolai Klimov, Amit Agrawal, Stephen Eckel, Vladimir Aksyuk, Jabez J. McClelland
Laser-cooled atoms are a key component of many calibration-free measurement platforms— including clocks, gyroscopes, and gravimeters—and are a promising technology for quantum networking and quantum computing. The optics and vacuum hardware required to

A system for probing Casimir energy corrections to the condensation energy

December 28, 2020
Author(s)
Diego J. Perez, Alexander Stange, Richard Lally, Lawrence Barrett, Matthias Imboden, Abhishek Som, David Campbell, Vladimir Aksyuk, David Bishop
In this article, we present a nano-electromechanical system (NEMS) designed to detect changes in the Casimir Energy. The Casimir effect is a result of the appearance of quantum fluctuations in the electromagnetic vacuum. Previous experiments have used nano

Electron and x-ray focused beam-induced cross-linking in liquids: Toward rapid continuous 3D nanoprinting and interfacing using soft materials

September 15, 2020
Author(s)
Tanya Gupta, Evgheni Strelcov, Glenn Holland, Joshua D. Schumacher, Yang Yang, Mandy Esch, Vladimir Aksyuk, Patrick Zeller, Matteo Amati, Luca Gregoratti, Andrei Kolmakov
Additive fabrication of biocompatible 3D structures out of liquid hydrogel solutions has become pivotal technology for tissue engineering, soft robotics, biosensing, drug delivery etc. Electron and X-ray lithography are well suited to pattern nanoscopic

Nano-opto-electro-mechanical switches operated at CMOS-level voltages

November 15, 2019
Author(s)
Christian Haffner, Andreas Joerg, Michael Doderer, Daniel Chelladurai, Felix Mayor, Comsin Ioan Roman, Yuriy Fedoryshyn, Mikael Mazur, Maurizio Burla, Henri J. Lezec, Vladimir A. Aksyuk, Juerg Leuthold
Reprogrammable optical networks that operate in symbiosis with CMOS electronics promise to advance technologies such as optical neural networks. However, current electro-optical switching technologies fail to combine CMOS-voltages, micrometer-scale

Nondegenerate Parametric Resonance in Large Ensembles of Coupled Micromechanical Cantilevers with Varying Natural Frequencies

December 28, 2018
Author(s)
Christopher B. Wallin, Roberto De Alba, Daron Westly, Glenn Holland, Scott Grutzik, Richard Rand, Alan Zehnder, Vladimir Aksyuk, Slava Krylov, Robert Ilic
We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of coplanar, interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly expanding lengths and thus varying natural frequencies. Within a