Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 717

Threshold and Laser Conversion in Nanostructured-Resonator Parametric Oscillators

January 10, 2024
Haixin Liu, Grant Brodnik, Jizhao Zang, David Carlson, Jennifer Black, Scott Papp
We explore optical parametric oscillation (OPO) in nanophotonic resonators, enabling arbitrary, nonlinear phase matching and nearly lossless control of energy conversion. Such pristine OPO laser converters are determined by nonlinear light-matter

A Fully Integrated, Automatically Generated DC-DC Converter Maintaining > 75% Efficiency From 398 K Down to 23 K Across Wide Load Ranges in 12-nm FinFET

January 1, 2024
Anhang Li, Jeongsup Lee, Prashansa Mukim, Brian Hoskins, Pragya Shrestha, David Wentzloff, David Blaauw, Dennis Sylvester, Mehdi Saligane
This paper presents a fully integrated recursive successive-approximation switched capacitor (RSC) DC-DC converter implemented using an automatic cell-based layout generation in 12 nm FinFET technology. A novel design methodology is demonstrated based on

Microstrip and Grounded CPW Calibration Kit Comparison for On-Wafer Transistor Characterization from 220 GHz to 325 GHz

November 15, 2023
Rob Jones, Jerome Cheron, Bryan Bosworth, Ben Jamroz, Dylan Williams, Miguel Urteaga, Ari Feldman, Peter Aaen
In this paper, we investigate the effect of two calibration errors, probe placement and capacitance per unit length, on transistor characterization from 220 GHz to 325 GHz on both a microstrip and an inverted coplanar waveguide with a via stitched ground


November 10, 2023
Vinod Narang, Zhang Chuan, David Su, Phil Kaszuba, Steven Herschbein, Alan Street, Eckhard Langer, Martin von Haartman, Yu Zhu, Baohua Niu, Erwin Hendarto, Bryan Tracy, Jochonia Nxumalo, Rik Otte, Keana C. K. Scott
Semiconductor technologies are advancing at a rapid pace, with ongoing developments in logic and memory scaling, the introduction of new materials and transistor architectures, and the integration of advanced packaging heterogeneous technologies such as

Magnetic tunnel junction-based crossbars: improving neural network performance by reducing the impact of non-idealities

July 13, 2023
William Borders, Nitin Prasad, Brian Hoskins, Advait Madhavan, Matthew Daniels, Vasileia Gerogiou, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland
Increasingly higher demand in chip area and power consumption for more sophisticated artificial neural networks has catalyzed efforts to develop architectures, circuits, and devices that perform like the human brain. However, many novel device technologies

Characterization of Noise in CMOS Ring Oscillators at Cryogenic Temperatures

July 12, 2023
Prashansa Mukim, Pragya Shrestha, Advait Madhavan, Nitin Prasad, Jason Campbell, Forrest Brewer, Mark Stiles, Jabez J. McClelland
Allan deviation provides a means to characterize the time-dependence of noise in oscillators and potentially identify the source characteristics. Measurements on a 130nm, 7-stage ring oscillator show that the Allan deviation declines from 300K to 150K as

Measurement and Gate-Voltage Dependence of Channel and Series Resistances in Lateral Depletion-Mode b-Ga2O3 MOSFETs

June 9, 2023
Ory Maimon, Neil Moser, Kyle Liddy, Andrew Green, Kelson Chabak, Kin (Charles) Cheung, Sujitra Pookpanratana, Qiliang Li
Lateral depletion-mode, beta-phase gallium oxide (β-Ga2O3) metal-oxide-semiconductor field-effect transistors (MOSFETs) with source-drain spacings of 3 µm, 8 µm, and 13 µm are studied using a modified Transfer Length Method (TLM) to obtain sheet

V-Ramp test and gate oxide screening under the "lucky" defect model

May 15, 2023
Kin (Charles) Cheung
The persistent (after exhaustive wafer cleaning) extrinsic breakdown distribution of thick gate oxides requires early breakdown mechanisms beyond the popular local thinning model to explain. The success of the 'Lucky" defect model in fulfilling this role

Semiconductor thermal and electrical properties decoupled by localized phonon resonances

May 10, 2023
Bryan Spann, Joel Weber, Matthew Brubaker, Todd E. Harvey, LINA YANG, Hossein Honarvar, Chia-Nien Tsai, Andrew Treglia, MINHYEA LEE, MAHMOUD HUSSEIN, Kris A. Bertness
Thermoelectric materials convert heat into electricity through thermally driven charge transport in solids or vice versa for cooling. To compete with conventional energy-conversion technologies, a thermoelectric material must possess the properties of both

A field-effect transistor-based room-temperature quantum current source

May 4, 2023
Kin (Charles) Cheung, Barry J O'Sullivan
The work provides a proof-of-concept demonstration of the room-temperature quantum current source based on nanoscale metal-oxide-semiconductor-Field-Effect-Transistor (MOSFET). Using low leakage MOSFET, the current pump achieved 1.00011 ± 0.00022 charges

Comparison of saturator designs for low volatility liquid precursor delivery

April 1, 2023
James E. Maslar, William A. Kimes, Vladimir B. Khromchenko, Brent Sperling, Ravindra Kanjolia
Low volatility precursors are widely utilized in chemical vapor deposition and atomic layer deposition processes. Such precursors are often delivered from one of two common saturator designs: a bubbler or a flow over vessel. Previous reports concerning

Ultrafast ID-VG Technique for Reliable Cryogenic Device Characterization

March 21, 2023
Pragya Shrestha, Akin Akturk, Brian Hoskins, Advait Madhavan, Jason Campbell
An in-depth understanding of the transient operation of devices at cryogenic temperatures remains experimentally elusive. However, the impact of these transients has recently become important in efforts to develop both electronics to support quantum

Multiscale Green's functions for modeling graphene and other Xenes

January 27, 2023
Vinod Tewary, Edward Garboczi
We give a review of the multiscale Green's function method for modeling modern two-dimensional nanomaterials such as graphene and other Xenes. The method is applicable to materials at different space and time scales and is computationally efficient. This

High-Resolution DNA Hybridization Kinetics Measurements with Double Gate FD-SOI Transistors

January 23, 2023
Seulki Cho, Alexander Zaslavsky, Curt A. Richter, Jacob Majikes, James Alexander Liddle, Francois Andrieu, Sylvain Barraud, Arvind Balijepalli
Double gate fully depleted SOI transistors operating in a remote gate configuration and under closed-loop feedback allow noise performance that exceeds their single gate counterparts by more than an order of magnitude. We leverage this high performance to

On the "intrinsic" breakdown of thick gate oxide

October 12, 2022
Kin (Charles) Cheung
Thick gate oxide breakdown mechanism becomes an important topic again due to the rising demand of power electronics. The failure of the percolation model in explaining the observed Weibull shape factor of thick oxide breakdown distribution seriously

Towards the Physical Reliability of 3D-Integrated Systems: Broadband Dielectric Spectroscopic (BDS) Studies of Material Evolution and Reliability in Integrated Systems

September 30, 2022
Papa Amoah, Joseph J. Kopanski, Yaw S. Obeng, Christopher Sunday, Chukwudi Okoro, Lin You, Dmirty Veksler
In this paper, we present an overview of our current research focus in developing non-destructive metrology for monitoring reliability issues in 3D-integrated electronic systems. We introduce a suite of non-destructive metrologies that can serve as early
Displaying 1 - 25 of 717