Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 101 - 125 of 458

Measurements of Nonlinear Polarization Dynamics in the Tens of Gigahertz

April 9, 2020
Author(s)
Aaron Hagerstrom, Eric J. Marksz, Xiaohang Zhang, Xifeng Lu, Christian Long, James Booth, Ichiro Takeuchi, Nathan Orloff
Frequency-dependent linear permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric eld. In

Targeted chemical pressure yields tuneable millimetre-wave dielectric

December 23, 2019
Author(s)
Natalie M. Dawley, Eric J. Marksz, Aaron Hagerstrom, Gerhard H. Olsen, Megan E. Holtz, Jingshu Zhang, Chris Long, Craig Fennie, David A. Muller, Darrell G. Schlom, James Booth, Nate Orloff
Tunable dielectrics are key constituents for emerging high-frequency devices in telecommunications—including tunable filters, phase shifters, and baluns—and for miniaturizing frequency-agile microwave and millimeter-wave components. Today, strained films

Nanobolometer with ultralow noise equivalent power

October 11, 2019
Author(s)
Roope J. Kokkoniemi, Joonas Govenius, Visa Vesterinen, Russell Lake, A M. Gunyho, K-Y Tan, S Simbierowicz, Leif Gronberg, J Lehtinen, M Prunnila, Juha Hassel, Antti Lamminen, O P. Saira, Mikko Mottonen
Since the introduction of bolometers more than a century ago, they have been used in various applications ranging from chemical sensors, consumer electronics, and security to particle physics and astronomy. However, faster bolometers with lower noise are

Omnidirectional Channel Sounder with Phased-Array Antennas for 5G Mobile Communications

June 30, 2019
Author(s)
Derek Caudill, Peter B. Papazian, Camillo Gentile, Jack Chuang, Nada T. Golmie
We describe a 60-GHz channel sounder with phased-array antennas and 1-GHz bandwidth. It estimates the angle of departure (AoD)/angle of arrival (AoA) of channel multipath components (MPCs) by sweeping the antenna space of the transmitter/receiver through 5

REFRACTIVE-INDEX GAS THERMOMETRY

April 18, 2019
Author(s)
Patrick Rourke, Christof Gaiser, Roberto M. Gavioso, Michael R. Moldover, Laurent Pitre, Robin Underwood
The principles and techniques of primary refractive-index gas thermometry (RIGT) are reviewed. Absolute primary RIGT using microwave measurements of helium-filled quasi-spherical resonators has been implemented at the temperatures of the triple points of

Spontaneous current constriction in threshold switching devices

April 9, 2019
Author(s)
Jonathan Goodwill, Georg Ramer, Dasheng Li, Brian Hoskins, Georges Pavlidis, Jabez J. McClelland, Andrea Centrone, James A. Bain, Marek Skowronski
Threshold switching devices exhibit extremely non-linear current-voltage characteristics, which are of increasing importance for a number of applications including solid-state memories and neuromorphic circuits. It has been proposed that such non-linear

Electric Field Gradient Reference Material for Scanning Probe Microscopy

March 31, 2019
Author(s)
Joseph Kopanski, Lin You
Any eSPM measurement of a spatially varying electric field at the surface of a sample has a large uncertainty due to the unknown details of the tip shape near the surface. We have designed an electric field gradient reference sample to provide an

Low-resistance, high-yield electrical contacts to atom scale Si:P devices using palladium silicide

March 29, 2019
Author(s)
Scott W. Schmucker, Pradeep Namboodiri, Ranjit Kashid, Xiqiao Wang, Binhui Hu, Jonathan Wyrick, Alline Myers, Joshua D. Schumacher, Richard M. Silver, Michael Stewart
Scanning tunneling microscopy (STM) enables the fabrication of 2-D delta-doped structures in Si with atomistic precision, with applications from tunnel field effect transistors to qubits. The combination of a very small contact area and the restrictive

A Possible Advantage of Using Bi-directional S-Parameters in Antenna Measurements

November 30, 2018
Author(s)
Alex Yuffa, Ronald C. Wittmann, Michael H. Francis, Josh Gordon, David R. Novotny
the unknown-thru calibration technique is being used to achieve a system level calibration at milli-meter frequencies (>50 GHz) on the robotic ranges at NIST. Since this requires the use of a full bi-directional measurement, which takes longer than

Characterization of a Dual Josephson Impedance Bridge

October 21, 2018
Author(s)
Nathan Flowers-Jacobs, Blaise Jeanneret, Frederic Overney, Alain Rufenacht, Anna Fox, Paul Dresselhaus, Samuel P. Benz
This paper describes a dual Josephson impedance bridge capable of comparing any two impedances, that is, with any amplitude ratio and relative phase, over a wide range of frequency. A new, more compact, design has been achieved by mounting the two

MEMS non-absorbing electromagnetic power sensor employing the effect of radiation pressure

September 8, 2018
Author(s)
Ivan Ryger, Aly Artusio-Glimpse, Paul A. Williams, Gordon A. Shaw, Matt Simons, Christopher L. Holloway, John H. Lehman
We demonstrate a compact electromagnetic power sensor based on force effects of electromagnetic radiation onto a highly reflective mirror surface. Unlike the conventional power measurement approach, the photons are not absorbed and can be further used in

Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect

August 27, 2018
Author(s)
Eli J. Fox, Ilan T. Rosen, Yanfei Yang, George R. Jones Jr., Randolph Elmquist, Xufeng Kou, Lei Pan, Kang L. Wang, D. Goldhaber-Gordon
In the quantum anomalous Hall effect, quantized Hall resistance and vanishing longitudinal resistivity are predicted to result from the presence of dissipationless, chiral edge states and an insulating two-dimensional bulk, without requiring an external

Epitaxial graphene for quantum resistance metrology

July 20, 2018
Author(s)
Mattias Kruskopf, Randolph Elmquist
A new generation of graphene-based quantum Hall resistance standards promises high precision for the unit ohm under relaxed measurement conditions, enabling the use of compact measurement systems. To meet the requirements of metrological applications
Was this page helpful?