Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Sources and Detectors Group

The Sources and Detectors Group conducts research on the characterization of lasers, detectors, and related components.

Principally through measurement services and innovation, the group provides the optoelectronics industry with traceability to national standards. Activities of the group are currently carried out in three project areas: Laser Radiometry, Laser Applications, and Terahertz Imaging and Sources.

Research in the Photonic Radiometry Project is developing the next generation of high-accuracy optical power measurement standards for laser power, detector spectral responsivity, detector linearity, the attenuation of transmission components, and space-based measurements of the Earth Radiation Budget. To calibrate detectors and instruments used to measure the power or energy produced by a laser, the sun, or reflected by the Earth, the project has developed a family of chip-scale bolometric standards that provide accurate, SI-traceable measurements of optical power with robust, micro-fabricated detectors. Together with standards developed by the Laser Applications Project, these standards permit calibrations at laser power levels from nanowatts to hundreds of kilowatts and energy levels from femtojoules to megajoules. Wavelength ranges include the visible through the near infrared, and selected wavelengths in the ultraviolet and mid infrared. For more information, see the Measurement Services section of this site. Instruments designed to receive power either in collimated beams or through optical fibers can be accommodated.

High power lasers capable of continuous output powers ranging from hundreds of watts to tens-of-thousands of watts present exciting opportunities for rapid, directed delivery of energy – particularly in the area of materials processing and laser machining. These same high power lasers also present difficult challenges for the accurate measurement of their delivered power. The Laser Applications Project exists to enhance NIST's ability to measure high power laser output parameters with the necessary accuracy and ease of use. This is done by developing, testing, and implementing unique technologies such as a thermal flowing-water-based approach and a force-based technique using optical radiation pressure. The Laser Applications Project also makes use of NIST's high power laser facilities to develop technologies and measurement tools associated with laser machining and materials processing. Our 10 kW fiber laser and integrated laser welding booth provide opportunity for the development of supporting metrology for materials processing related to such applications as photovoltaic manufacturing and laser welding.

Press Coverage

News and Updates

Introducing the ‘Smart Mirror’

Lasers play roles in many manufacturing processes, from welding car parts to crafting engine components with 3D printers.* To control these tasks, manufacturers

Projects and Programs

Photonic Radiometry

Accurate characterization of photonic equipment is important for optical communications, medical devices, semiconductor lithography, manufacturing and materials

Terahertz Imaging and Sources

Imaging in the terahertz frequency range enables the detection of concealed weapons and other contraband (e.g., explosives under clothing) without the use of

Publications

Calibration of free-space and fiber-coupled single-photon detectors

Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space

BABAR: Black Array of Broadband Absolute Radiometers for far infrared sensing

Author(s)
Christopher S. Yung, Nathan A. Tomlin, Cameron Straatsma, Joel Rutkowski, Erik Richard, Dave Harber, John H. Lehman, Michelle S. Stephens
Currently at NIST, there is an effort to develop a black array of broadband absolute radiometers (BABAR) for far infrared sensing. The linear array of

Inline Laser Power Measurement by Photon Momentum

Author(s)
John H. Lehman, Paul A. Williams, Daniel W. Rahn, Kyle A. Rogers
We present a measurement scheme and instrumentation for quantifying laser power by means of photon momentum. The optical design is optimized such that the

Awards

John Lehman Elected OSA Fellow

Optical Society of America (OSA) members who have served with distinction in the advancement of optics may be proposed for election to the...

Contacts

Group Leader