Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Matt Simons (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 36 of 36

Rydberg Atom Electric-Field Metrology

November 28, 2017
Author(s)
Joshua A. Gordon, Christopher L. Holloway, Matthew T. Simons
We present a technique which shows great promise for realizing an atomic standard measurement of RF fields that is intrinsically calibrated, directly linked to the SI and atomic structural constants. This technique relies on the reponse of Rydberg atoms to

Development of A New Atom-Based SI Traceable Electric-Field Metrology Technique

October 18, 2017
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon
We are developing a fundamentally new atom-based approach for Electric (E) metrology. This technique has the capability of becoming a new international standard for E-field measurements and calibrations. Since this new approach is based on atomic

Atom-based RF electric field metrology above 100 GHz

July 16, 2017
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon
While atom-based radio-frequency (RF) electric field probes have the potential to improve electric field measurements for a broad range of frequencies (from a few GHz to 100s of GHz) and field strengths (mV/m to kV/m), extending the measurement

Measurement Challenges for 5G and Beyond

July 14, 2017
Author(s)
Catherine A. Remley, Jeffrey A. Jargon, Joshua A. Gordon, Alexandra E. Curtin, David R. Novotny, Christopher L. Holloway, Robert D. Horansky, Michael S. Allman, Jeanne T. Quimby, Camillo A. Gentile, Peter B. Papazian, Ruoyu Sun, Damir Senic, Jelena Senic, Matthew T. Simons, Maria G. Becker, Dylan F. Williams, Richard A. Chamberlin, Jerome G. Cheron, Ari D. Feldman, Paul D. Hale, Mohit S. Mujumdar, Nada T. Golmie
National Metrology Institutes (NMIs) around the world are charged with supporting industry through improved measurement science and by providing a traceability path to fundamental physical standards. Mobile wireless communications have become a ubiquitous

Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

May 24, 2017
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon, Georg Raithel, dave Anderson
We investigate the relationship between the Rabi frequency ($\Ω_{RF}$, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio- frequency (RF) electric (E) field strength measurements using Rydberg states

An Overview of Atom-Based SI-Traceable Electric-Field Metrology

October 30, 2016
Author(s)
Joshua A. Gordon, Christopher L. Holloway, Matthew T. Simons
We present an overview of radio frequency (RF) electric-field measurements using Rydberg atoms. This technique exploits the rich resonance response of these atoms which can occur across a large frequency range from 1 GHz-500 GHz. This measurement utilizes

Using Frequency Detuning to Improve the Sensitivity of Electric Field Measurements via Electromagnetically Induced Transparency and Autler-Townes Splitting In Rydberg Atoms

March 14, 2016
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon
In this work we demonstrate an approach for improved sensitivity in weak RF electric-field measurements using Rydberg EIT in an atomic vapor. This is accomplished by varying the RF frequency around a resonant atomic transition and extrapolating the weak on