Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Weak Electric-Field Detection with Sub-1 Hz Resolution at Radio Frequencies Using A Rydberg Atom-Based Mixer



Joshua A. Gordon, Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab


Rydberg atoms have been used for measuring radio-frequency (RF) electric (E)-fields due to their strong dipole moments over the frequency range of 500 MHz-1 THz. For this, electromagnetically induced transparency (EIT) within the Autler-Townes (AT) regime is used such that the detected E-field is proportional to AT splitting. However, for weak E-fields AT peak separation becomes unresolvable thus limiting the minimum detectable field. Here, we demonstrate using the Rydberg atoms as an RF mixer for weak RF E-field detection well below the AT regime with frequency discrimination better than 1 Hz resolution. Two E-fields incident on a vapor cell full of cesium atoms are used. One E-field at 19.626000 GHz drives the 34D5=2!35P3=2 Rydberg transition and acts as a local oscillator (LO) and a second signal E-field (Sig) of interest is at 19.626090 GHz. In the presence of the LO the Rydberg atoms naturally down convert the Sig field to a 90 kHz intermediate frequency (IF) signal. This IF signal manifests as an oscillation in the probe laser intensity through the Rydberg vapor and is easily detected with a photodiode and lock-in amplifier. In the configuration used here, E-field strength down to 46 mV/m were detected. Furthermore, neighboring fields 0.1 Hz away and equal in strength to Sig could be discriminated without any leakage into the lock-in signal. For signals 1 Hz away and as high as +60 dB above Sig, leakage into the lock-in signal could be kept below 􀀀3 dB.
Applied Physics Letters


Rydber atoms, radio frequency, mixer, weak field, modulation, AM, FM, QPSK
Created April 25, 2019, Updated April 30, 2019