NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thomas P. Moffat, Trevor Braun, David Raciti, Daniel Josell
CONSPECTUS: State-of-the-art manufacturing of electronics involves the electrodeposition of Cu to form 3-D circuitry of arbitrary complexity. This ranges from nanometers wide interconnects between individual transistors to increasingly large multilevel
Pei Lay Yap, Farzaneh Farivar, Victoria Coleman, Asa Jamting, Sam Gnaniah, Elisabeth Mansfield, Cheng Pu, Sandra Marcela Landi, Marcus Vinicius David, Emmanuel Flahaut, Paul Finnie, Mary Gallerneault, M. Dominque Locatelli, Sebastien Jacquinot, Carltoa Gray Slough, Jan Hanss, Jorg Menzel, Stefen Schmolzer, Lingling Ren, Andrew Pollard, Dusan Losic
Graphene materials are strongly emerging from academic research labs into industrial sectors with many developed products on market. Characterizations and quality control of graphene materials are very critical with an urgent demand for reliable
Erdem Coskun, Pawel Jaruga, Miral M. Dizdar, Bryant C. Nelson, Neenu Singh, Leona Scanlan, Shareen Doak
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography–tandem mass spectrometry with
Keiichiro Maegawa, Fan Zhang, Qiaxian Johnson, Mihaela Jitianu, Tan Wai Kian, Go Kawamura, Atsunori Matsuda, Andrei Jitianu
Layered double hydroxides (LDHs) are mixed M(II) and M(III) hydroxides with positively charged lamellar brucite layers and interlayered anions. LDHs attracted significant attention due to their anion and cation-exchange ability, adsorption capacity, and
Andrew J. Allen, Eric J. Cockayne, Winnie Wong-Ng, Jeffrey Culp, Ivan Kuzmenko
The structural and microstructural responses of a model metal-organic framework (MOF) material, Ni(3-Methy-4,4'-bipyridine)[Ni(CN)4] (Ni-BpyMe or PICNIC 21), to CO2 adsorption and desorption are reported for in situ small-angle X-ray scattering (SAXS) and
We give a review of the multiscale Green's function method for modeling modern two-dimensional nanomaterials such as graphene and other Xenes. The method is applicable to materials at different space and time scales and is computationally efficient. This
Seulki Cho, Alexander Zaslavsky, Curt A. Richter, Jacob Majikes, James Alexander Liddle, Francois Andrieu, Sylvain Barraud, Arvind Balijepalli
Double gate fully depleted SOI transistors operating in a remote gate configuration and under closed-loop feedback allow noise performance that exceeds their single gate counterparts by more than an order of magnitude. We leverage this high performance to
Peng Zheng, Saransh Arora, Krishanu Ray, Stephen Semancik, Ishan Barman
Abstract Nitrogen-vacancy (NV) centers in nanodiamond hold great promise for creating superior biological labels and quantum sensing methods. Yet, inefficient photon generation and extraction from excited NV centers restricts the achievable sensitivity and
Han Li, Christopher Sims, Rui Kang, Frank Biedermann, Jeffrey Fagan, Benjamin Flavel
Sorting single-chirality enantiomers is the ultimate goal for single-wall carbon nanotube (SWCNT) separation. In this work, aqueous two-phase extraction (ATPE) is used to obtain highly purified (>80%) left- and right-handed (6,5) SWCNTs with limited
Ty Gong, Hamdan Alghamdi, David Raciti, Anthony Shoji Hall
The electrochemical oxidation of H2 is > 100 times slower in alkaline electroltyes in comparison to acidic electrolytes. Here, we report that ordered intermetallic PtSb is a potent catalyst for the alkaline hydrogen oxidation reaction. PtSb exhibits higher
Miela Gross, Walid Al Misba, Kensuke Hayashi, Dhritiman Bhattacharya, Daniel Gopman, Jayasimha Atulasimha, Caroline Ross
Voltage-tuning of the magnetic anisotropy is dempnstrated in ferrimagnetic insulating rare earth iron garnets on a piezoelectric substrate, (011)-oriented PMN-PT. A yttrium-substituted dysprosium iron garnet (YDyIG) film 42 nm thick is grown via pulsed
Jordan Stone, Xiyuan Lu, Gregory Moille, Kartik Srinivasan
Optical parametric oscillators are a ubiquitous technology used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to
As an important development of the last decades, mechanical properties of nanoscale materials have been extracted from nanoindentation and atomic force microscopy. These techniques rely on contact mechanics models to convert the measured probe response
From microcircuits to metamaterials, micropatterning surfaces adds valuable functionality. For non-planar surfaces, however, incompatibility with conventional microlithography requires transferring originally planar micropatterns onto those surfaces but
Tae Joon Cho, Vincent A. Hackley, Vytas Reipa, Alessandro Tona, Christopher Sims, Natalia Farkas
Polyethyleneimine (PEI) conjugated gold nanoparticles (Au-PEIs) have potential use as positively charged gold nanoparticles (AuNPs) for nanomedical applications, due to their cationic surface that promotes cellular uptake and gene transfection. We report
Evgheni Strelcov, Lin You, Yaw S. Obeng, Joseph J. Kopanski
In recent years, scanning probe microscopy (SPM) has drawn substantial attention for subsurface imaging, since the ultra-sharp AFM tip (≈10 nm in radius) can deliver and detect, mechanical and electrical signals right above the material's 3D volume with
Jinshui Miao, Chloe Leblanc, Jinjin Wang, Yue Gu, Xiwen Liu, Baokun Song, Huairuo Zhang, Sergiy Krylyuk, Weida Hu, Albert Davydov, Tyson Back, Nicholas Glavin, Deep Jariwala
Low power consumption in the static and dynamic modes of operation is a key requirement in the development of modern electronics. Tunnel field-effect transistors with direct band-to-band charge tunnelling and steep-subthreshold-slope transfer
Kaleb Duelge, George Mulholland, Vincent A. Hackley, Michael Zachariah
A critical and extensive comparison was made between differential mobility analysis (DMA) measurements of the mean diameter of monodisperse gold nanoparticles (AuNP), based on step-voltage mode and the more commonly used scan-voltage mode (commercially
Michal Macha, Sanjin Marion, Mukesh Tripathi, Martina Lihter, Alex Smolyanitsky, Andras Kis, Aleksandra Radenovic
Large-area nanopore drilling is a major bottleneck in state-of-the-art nanoporous 2D membrane fabrication protocols. In addition, high-quality structural and statistical descriptions of as-fabricated porous membranes are key to predicting the corresponding
Ryan DeCrescent, Zixuan Wang, Poolad Imany, Robert Boutelle, Corey McDonald, Travis Autry, John Teufel, Sae Woo Nam, Richard Mirin
Surface acoustic waves (SAWs) coupled to quantum dots (QDs), trapped atoms and ions, and point defects have been proposed as quantum transduction platforms, yet the requisite coupling rates and cavity lifetimes have not been experimentally established
Paul DeRose, Kurt D. Benkstein, Elzafir B. Elsheikh, Adolfas K. Gaigalas, Sean Lehman, Dean Ripple, Linhua Tian, Wyatt Vreeland, Adam York, Yu-Zhong Zhang, Hao-Wei Wang
The number concentrations of nominal 100 nm, 200 nm and 500 nm diameter, fluorescently-labeled polystyrene nanosphere suspensions were measured using seven different techniques. Diameter values were also measured where possible. The diameter values were
Garnett W. Bryant, Piotr Rozanski, Michal Zielinski
The ability to uniquely determine the locations of phosphorous dopants in silicon is crucial for the design and scaling of nanoscale devices for future quantum computing applications. In recent years, several papers showed that metrology combining scanning