NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening has been performed using animal
Marla L. Dowell, Hannah Brown, Gretchen Greene, Paul D. Hale, Brian Hoskins, Sarah Hughes, Bob R. Keller, R Joseph Kline, June W. Lau, Jeff Shainline
The CHIPS and Science Act of 2022 called for NIST to "carry out a microelectronics research program to enable advances and breakthroughs....that will accelerate the underlying R&D for metrology of next-generation microelectronics and ensure the
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
A large-format mid-infrared single-photon imager with very low dark count rates would enable a broad range of applications in fields like astronomy and chemistry. Superconducting nanowire single-photon detectors (SNSPDs) are a mature photon-counting
A significant advance in rate and precision of identifying the co-surfactant concentrations leading to differential extraction of specific single-wall carbon nanotube (SWCNT) species in aqueous two-polymer phase extraction (ATPE) experiments is reported
Monique Johnson, Antonio Montoro Bustos, Karen Murphy, Sadia Khan, Ingo Strenge, Matthew Kalan
Silicon dioxide (SiO2) is an approved direct food additive in the United States and has been used as an anticaking agent in powdered food products and as a stabilizer in the production of beer. While SiO2 has been used in food for many years, there is
Elvin Beach, Kurt D. Benkstein, Krenar Shqau, Christopher Montgomery, Patricia Morris, Stephen Semancik
Microhotplates produced by micromachining processes provide a robust substrate for miniaturized solid-state gas sensors; however, it can be challenging to locally deposit solution-suspended nanomaterials for sensing directly onto these small (≈ 100 µm), 3
William Borders, Advait Madhavan, Matthew Daniels, Vasileia Georgiou, Martin Lueker-Boden, Tiffany Santos, Patrick Braganca, Mark Stiles, Jabez J. McClelland, Brian Hoskins
Neural networks are increasing in scale and sophistication, catalyzing the need for efficient hardware. An inevitability when transferring neural networks to hardware is that non-idealities impact performance. Hardware-aware training, where non-idealities
Elisabeth Mansfield, Bryan Barnes, R Joseph Kline, Andras E. Vladar, Yaw S. Obeng, Albert Davydov
The Metrology Chapter identifies emerging measurement challenges from devices, systems, and integration of new materials in the semiconductor industry and describes research and development pathways for meeting them. This includes but not limited to
Daniel Walkup, Fereshte Ghahari, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Nikolai Zhitenev, Joseph A. Stroscio
Coupled quantum dots have been realized in a wide variety of physical systems and have attracted interest for many different applications. Here, we examine novel graphene quantum dots in backgated devices on hBN, and visualize their merger using scanning
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
Superconducting Nanowire Single-Photon Detectors (SNSPDs) are excellent devices for the analysis of faint light from the ultraviolet to the mid-infrared. Recent developments push their broad wavelength bandwidth further into the mid-infrared towards 20 μm
Quantum sensing is poised to deliver unparalleled performance compared to its classical counterpart. While fundamental to quantum sensing, quantum state control has been traditionally limited to extreme conditions, such as a high vacuum or an ultra-stable
Katrin Loeschner, Monique Johnson, Antonio Montoro Bustos
Due to enhanced properties at the nanoscale, nanomaterials (NMs) have been incorporated into foods, food additives, and food packaging materials. Knowledge gaps related to (but not limited to) the fate, transport, bioaccumulation, and toxicity of
Two-dimensional layered transition metal dichalcogenides are potential thermoelectric candidates with application in on-chip integrated nanoscale cooling and power generation. Here, we report a comprehensive experimental and theoretical study on the in
Janet Carter, Sri Nadadur, Rhema Bjorkland, William Boyes, Chuck Geraci, Vincent A. Hackley, John Howard, Alan Kennedy, Igor Linkov, Joanna Matheson, Holly Mortensen, Custudio Muinga, Elijah Petersen, Nora Savage, Stacey Standridge, Trey Thomas, Benjamin Trump
This article discusses critical issues and opportunities going forward in nanotechnology environmental, health, and safety (nanoEHS) research from the perspective of Federal Government agency participants in the U.S. National Nanotechnology Initiative (NNI
Emerson Melo, William Eshbaugh, Edward Flagg, Marcelo Davanco
Epitaxial quantum dots can emit polarization-entangled photon pairs. If orthogonal polarizations are converted to independent paths, then the photons will be path entangled. We use an inverse design approach with adjoint method optimization to produce a
Frances Allen, Paul Blanchard, David Pappas, Russell Lake, Deying Xia, John Notte, Ruopeng Zhang, Andrew Minor, Norman A. Sanford
We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip shaping after conventional annulus milling using gallium ions. This dual-ion
Samuel Oberdick, Kalina Jordanova, John Lundstrom, Giacomo Parigi, Megan Poorman, Gary Zabow, Katy Keenan
We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron-oxide based agents, such as the FDA-approved ferumoxytol
Bivek Bista, Prafful Golani, Fengdeng Liu, Tristan Truttmann, Georges Pavlidis, Andrea Centrone, Bharat Jalan, Steven Koester
Given the ever increasing, global electricity consumption, improving the efficiency and reliability of high-power electronics is of paramount importance. Ultra-wide band gap (> 3.4 eV) semiconductors have shown the potential to be used in the next
Gregory Spektor, David Carlson, Zachary Newman, Jinhie Lee Skarda, Neil Sapra, Logan Su, Sindhu Jammi, Andrew Ferdinand, Amit Agrawal, Jelena Vuckovic, Scott Papp
Visible wavelength lasers control quantum matter of atoms and molecules, enable frontiers of physical sensing, and are foundational for various applications. The development of visible integrated photonics opens the possibility for scalable circuits with
Andrei Kolmakov, Trey Diulus, Kurt D. Benkstein, Stephen Semancik, Majid Kazemian, Matteo Amati, Maya Kiskinova, Luca Gregoratti
With size reduction of active elements in microelectronics to tens of nanometers and below, the effect of surface and interface properties on overall device performance becomes crucial. High resolution spectroscopic and imaging techniques provide a
Babak Nikoobakht, Yuqin Zong, Okan Koksal, Amit Agrawal, Christopher B. Montgomery, Jacob Leach, Michael Shur
Previously, we showed within a sub-micron fin shape heterojunction, as current density increases, the non-radiative Auger recombination saturates mediated by the extension of the depletion region into the fin, resulting in a droop-free behavior. In this
Anouar Rahmouni, Lijun Ma, Ruixuan Wang, Jingwei Li, Xiao Tang, Thomas Gerrits, Qing Li, Oliver T. Slattery
We demonstrate efficient photon pair generation via implementing spontaneous four-wave mixing in a compact, high-quality-factor microring resonator in the 4H-silicon-carbide-on-insulator platform. Photon pairs with coincidence-to-accidental ratio up to 600
Adam McCaughan, Yao Zhai, Boris Korzh, Jason Allmaras, Bakhrom Oripov, Matthew Shaw, Sae Woo Nam
Although superconducting nanowire single-photon detectors (SNSPDs) are a promising technology for quantum optics, metrology, and astronomy, they currently lack a readout architecture that is scalable to the megapixel regime and beyond. In this work, we