Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

High-Resolution DNA Binding Kinetics Measurements with Double Gate FD-SOI Transistors



Seulki Cho, Alexander Zaslavsky, Curt A. Richter, Jacob Majikes, James Alexander Liddle, François Andrieu, Sylvain Barraud, Arvind Balijepalli


Double gate fully depleted SOI transistors operating in a remote gate configuration and under closed-loop feedback allow noise performance that exceeds their single gate counterparts by more than an order of magnitude. We leverage this high performance to measure DNA hybridization in real-time, extracting quantitative association rates that scale with analyte concentration. Our low noise measurements allow a limit of detection (LOD) of 100 fM using a sensor chip attached to reusable readout circuitry. Finally, we demonstrate the devices can be operated at high ionic strengths allowing flexibility in assay design for a modest tradeoff in LOD.
Proceedings Title
Proceedings of the IEEE Electron Device Meeting
Conference Dates
December 3-7, 2022
Conference Location
San Francisco, CA, US
Conference Title
IEEE Electron Device Meeting


FD-SOI, DNA hybridization, pH sensing


Cho, S. , Zaslavsky, A. , Richter, C. , Majikes, J. , Liddle, J. , Andrieu, F. , Barraud, S. and Balijepalli, A. (2023), High-Resolution DNA Binding Kinetics Measurements with Double Gate FD-SOI Transistors, Proceedings of the IEEE Electron Device Meeting, San Francisco, CA, US, [online],, (Accessed May 19, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created January 23, 2023, Updated May 13, 2024