An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In this paper, I review the notion of a quantum network, which I define as one that can distribute entanglement between stationary qubits, and then discuss challenges relevant for the Optical Fiber Conference (OFC).
Sugata Chowdhury, Kevin Garrity, Francesca Tavazza
Extensive research is currently focused on 2D and 3D magnetic topological insulators (MTIs), as their many novel properties make them excellent candidates for applications in spintronics and quantum computing. Practical MTIs requires a combination of
Sugata Chowdhury, Albert Rigosi, Heather Hill, David B. Newell, Angela R. Hight Walker, Francesca Tavazza, Andrew Briggs
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe2) exhibit exciting behaviors at low temperatures including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to classify the
A InP-based mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a SiN microresonator-based dissipative Kerr soliton with a rep- etition rate of 305 GHz. The synchronization is achieved through
Yu-Ching Hsiao, Daniel Gopman, Kotekar Mohanchandra, Paymon Shirazi, Gregory Carman, Christopher Lynch
Uniform magnetic behavior within arrays of magnetoelectric heterostructures is important for the development of reliable strain-mediated microdevices. Multiple mechanisms may contribute to observed nonuniform magnetization reversal including surface
Caterina Minelli, Karen E. Murphy, Monique Johnson, Antonio Montoro Bustos, Jeffrey Fagan, Ingo Strenge
We describe the outcome of an international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced
Samuel Berweger, Fei Zhang, Bryon Larson, Andrew Ferguson, Axel Palmstrom, Obadiah Reid, Thomas Mitchell (Mitch) Wallis, Kai Zhu, Joseph Berry, Pavel Kabos, Sanjini Nanayakkara
The excellent optoelectronic properties of lead-halide perovskite thin films are complemented by their tolerance to broad compositional variations and associated strain, which allows tuning of desired properties such as the optical bandgap. On the other
Garnett W. Bryant, D. Quang To, Zhengtianye Wang, Q. Dai Ho, Ruiqi Hu, Wilder Acuna, Yongchen Liu, Anderson Janotti, Joshua Zide, Stephanie Law, Matthew Doty
We probe theoretically the emergence of strong coupling in a system consisting of a topological insulator (TI) and a III-V heterostructure using a numerical approach based on the scattering matrix formalism. Speci cally, we investigate the interactions
Melissa Chernick, Alan Kennedy, Treye Thomas, Keana C. K. Scott, Christine Ogilvie Hendren, Mark Wiesner, David Hinton
Polymer nanocomposites combine the versatile, lightweight characteristics of polymers with the properties of nanomaterials. Polyethylene terephthalate glycol (PETG) is commonly used in polymer additive manufacturing due to its controllable transparency
Yongze Ren, Shihao Guo, Wenqi Zhu, Pengcheng Huo, Sijia Liu, Song Zhang, Peng Chen, Lu Chen, Henri Lezec, Amit Agrawal, Yanqing Lu, Ting Xu
Decoding arbitrary polarization information from an optical field has triggered unprecedented endeavors in polarization imaging, remote sensing and information processing. Therefore, developing a polarization detection device with full on-chip integration
Polymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness, as their helicoidal structure deflects crack propagation and the polymer matrix dissipates impact
Jordan Stone, Gregory Moille, Xiyuan Lu, Kartik Srinivasan
We study optical parametric oscillations in Kerr-nonlinear microresonators, revealing an intricate solution space -- parameterized by the pump-to-sideband conversion efficiency -- that arises from an interplay of nonlinear processes. Using a three-wave
Antonio Montoro Bustos, Karen E. Murphy, Michael R. Winchester
Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that is capable of simultaneous measurement of size and number concentration of metal-containing nanoparticles (NPs) at environmentally relevant levels
The polarity-tunable anomalous Hall effect (AHE) is useful for electronic device applications. Here in a magnetic topological insulator MnBi2Te4 grown by molecular beam epitaxy, we report the polarity change of the AHE by increasing the temperature or
We utilize the recently developed frequency-modulated charge pumping technique to detect a single charge per cycle, which strongly suggests a single Si/SiO2 interface trap. This demonstration in sub-micron MOSFETs, in which scaling of the gate oxide yields
Quantitative determination of the effects of surfactant chemistry and polymer molecular mass choices on the concentration conditions necessary to yield extraction of specific single-wall carbon nanotube (SWNCT) species in an aqueous two-polymer phase
Falk Niefind, Henry Bell, Thuc Mai, Angela R. Hight Walker, Randolph Elmquist, Sujitra Pookpanratana
A photoemission electron microscope (PEEM) was recently commissioned at the NIST. To benchmark its capabilities, epitaxial graphene on 4H-SiC (0001) was imaged and analyzed in the PEEM and compared to other complementary imaging techniques. We determine
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface
Kamal Choudhary, Kevin Garrity, Charles Camp, Sergei Kalinin, Rama Vasudevan, Maxim Ziatdinov, Francesca Tavazza
We introduce the systematic database of scanning tunneling microscope (STM) images obtained using density functional theory (DFT) for two-dimensional (2D) materials, calculated using the Tersoff-Hamann method. It currently contains data for 716 exfoliable
Tom Vincent, Jiayun liang, simrjit singh, eli castanon, xiaotian zhang, deep jariwala, olga kazakova, zakaria al-balushi, Amber McCreary
The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as well as
Liam Collins, Jason Killgore, Samuel Berweger, Rachael Cohn, neus domingo, Georg Fantner, Rajiv Giridharagopal, Sergei Kalinin, Philippe LECLERE, Simon Scheuring, Rama Vasudevan, Dalia Yablon
In March 2020 our plans for organizing and hosting one of the premier scanning probe microscopy (SPM) conferences in Breckenridge, Colorado, USA were well underway. For the first time the meeting would synergistically combine International Scanning Probe
Samuel Berweger, Robert Tyrrell-Ead, Houchen Chang, Mingzhong Wu, Hong Tang, Hans Nembach, Karl Stupic, Stephen E. Russek, Thomas Mitchell (Mitch) Wallis, Pavel Kabos
We present images of spin-wave excitations in a patterned yttrium iron garnet (YIG) thin film obtained by use of near-field microwave microscopy, which can achieve spatial resolution as high as 50 nm. Visualization of magnetic excitations is an enticing
Qianwei Zhou, Mingze Liu, Wenqi Zhu, Lu Chen, Yongze Ren, Henri Lezec, Yanqing Lu, Ting Xu, Amit Agrawal
Perfect vortex beam (PVB) is a propagating optical field carrying orbital angular momentum (OAM) with a radial intensity profile that is independent of topological charge. PVB can be generated through the Fourier transform of a Bessel-Gaussian beam, which