Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Atom Scale Device Group

Develops, measures, understands and exploits quantum and electronic devices and sensors at the interface between atomic and nanoscale solid-state systems. Systems under study include dopant-based and nanofabricated Si devices for quantum technologies, quantum simulation, quantum sensing and charge sensing, spins in nanoscale and atomic scale solid-state systems, and hybrid solid-state systems.

Our program combines theory and experiment. Theory is extending the fundamental understanding of systems at the atomic/nanoscale interface, probing the frontier between the classical and the quantum, exploring new applications in nanoscale and quantum technologies, and motivating new, precision metrology. We are developing the theoretical understanding needed to exploit nanoplasmonic and semiconductor quantum dot structures for quantum and nanoscale technologies, to develop next generation atomic clocks, to simulate exotic condensed matter with ultracold atoms, to understand quantum information propagation in interacting systems, and to implement useful quantum information, detection and measurement protocols.

Experiment is being conducted to develop precision measurement tools for this regime, to collect precise data essential for the applications mentioned, and to further the understanding of these systems. We are probing the charge and spin transport, optical, and mechanical properties of nanoscale and quantum-coherent solid-state systems. We are exploiting nanoscale Si devices to provide precision charge sensing on-chip. We are exploring the use of these nanoscale Si devices for quantum technology and are pushing these devices to the atomic scale using structures fabricated by controlled placement of individual dopants. Such devices will allow us to explore the ultimate atomic-scale limit for traditional Si electronic devices and implement atomic-scale quantum technologies in Si. We are developing isotopically enriched Si needed for Si quantum technology and investigating novel materials for spintronics. We are developing semiconductor quantum dots as useful sources of single photons, entangled photons, and charge and spin qubits. We are creating nanomechanical devices whose mechanical vibration can approach the quantum ground state, opening the way to macroscopic quantum systems.

News and Updates

Measuring Up: Coming Out from the Cold

Researchers at the National Institute of Standards and Technology (NIST) have constructed and tested a system that allows commercial electronic components –

Projects and Programs

Atom-based Silicon Quantum Electronics

Ongoing
This project is developing atomically precise, atom-based electronic devices for use in quantum information processing and analog quantum simulation. We are developing the fabrication, measurement, and modeling methods needed to realize single atom, spin-based qubits in silicon as an integrated

Designing the Nanoworld: Nanostructure, Nanodevices, and Nano-optics

Ongoing
Developing and exploiting nanodevices for quantum and nanotechnologies requires nanoscale and atomic scale modeling of ultrasmall structures, devices, their operation, and their response to probes. Key challenges of understanding physics at the quantum/classical interface and measurement at the

Enriched Silicon and Devices for Quantum Information

Ongoing
Enriching silicon from 5% to <1 ppm 29Si Groundbreaking work around the world has realized qubits in silicon using metal-oxide-semiconductor (MOS) devices, single atomic dopants/defects and SiGe heterostructures, and, in all cases, the qubit coherence and fidelity properties are improved when using

Publications

Awards

Contacts

Group Leader

Group Office Manager