Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 301

Indistinguishable single-mode photons from spectrally engineered biphotons

April 15, 2019
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Changchen Chen, Jane Heyes, Kyung-Han Hong, Jeffrey Shapiro, Franco N. Wong
We use pulsed spontaneous parametric down-conversion in KTiOPO4, with a Gaussian phasematching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows

Multi-pulse fitting of transition edge sensor signals from a near-infrared continuous-wave source

December 11, 2018
Author(s)
Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Jianwei Lee, Lijiong Shen, Alessandro Cere, Christian Kurtsiefer
Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux

Approximating vibronic spectroscopy with imperfect quantum optics

November 23, 2018
Author(s)
W.R. Clements, Jelmer Renema, Andreas Eckstein, Antonio A. Valido, Adriana Lita, Thomas Gerrits, Sae Woo Nam, Steven Kolthammer, Joonsuk Huh
We study the impact of experimental imperfections on a recently proposed protocol for performing quantum simulations of vibronic spectroscopy. Specifically, we propose a method for quantifying the impact of these imperfections, optimizing an experiment to

Design of superconducting optoelectronic networks for neuromorphic computing

November 6, 2018
Author(s)
Sonia Buckley, Adam McCaughan, Jeff Chiles, Richard Mirin, Sae Woo Nam, Jeff Shainline
We have previously proposed a novel hardware platform for neuromorphic computing based on superconducting optoelectronics that presents many of the features necessary for information processing in the brain. Here we discuss the design and training of

On the scalability of parametric down-conversion for generating higher-order Fock states

October 18, 2018
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Johannes Tiedau, Tim J. Bartley, Georg Harder, Christine Silberhorn
Spontaneous parametric down-conversion (SPDC) is the most widely-used method to generate higher-order Fock states (n>2). Yet, a consistent performance analysis from fundamental principles is missing. Here we address this problem by analyzing state fidelity

Circuit designs for superconducting optoelectronic loop neurons

October 12, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Richard P. Mirin, Sae Woo Nam, Sonia M. Buckley
We present designs of superconducting optoelectronic neurons based on superconducting single- photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. The neurons send few-photon signals to synaptic

Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion

October 9, 2018
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana Lita, Lijiong Shen, Jianwei Lee, Le Phuc Thinh, Jean-Daniel Bancal, Alessandro Cere
We present a violation of the CHSH inequality without the fair sampling assumption with a continuously pumped photon pairs source combined with two high efficiency superconducting detectors. Due to the continuous nature of the source, the choice of the

Superconducting optoelectronic networks III: synaptic plasticity

July 5, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Sonia M. Buckley, Christine A. Donnelly, Manuel C. Castellanos Beltran, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam
As a means of dynamically reconfiguring the synaptic weight of a superconducting optoelectronic loop neuron, a superconducting flux storage loop is inductively coupled to the synaptic current bias of the neuron. A standard flux memory cell is used to

Short-wave infrared compressive imaging of single photons

June 6, 2018
Author(s)
Thomas Gerrits, Daniel Lum, Varun B. Verma, John Howell, Richard P. Mirin, Sae Woo Nam
We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background

Superconducting optoelectronic networks V: networks and scaling

May 17, 2018
Author(s)
Jeffrey M. Shainline, Jeffrey T. Chiles, Sonia M. Buckley, Adam N. McCaughan, Richard P. Mirin, Sae Woo Nam
Networks of superconducting optoelectronic neurons are investigated for their near-term technological potential and long-term physical limitations. Networks with short average path length, high clustering coefficient, and power-law degree distribution are

Superconducting optoelectronic networks IV: transmitter circuits

May 9, 2018
Author(s)
Jeffrey M. Shainline, Adam N. McCaughan, Sonia M. Buckley, Richard P. Mirin, Sae Woo Nam, Amir Jafari-Salim
A superconducting optoelectronic neuron will produce a small current pulse upon reaching threshold. We present an amplifier chain which converts this small current pulse to a voltage pulse sufficient to produce light from a semiconductor diode. This light

Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling

April 11, 2018
Author(s)
Peter L. Bierhorst, Emanuel H. Knill, Scott C. Glancy, Yanbao Zhang, Alan Mink, Stephen P. Jordan, Andrea Rommal, Yi-Kai Liu, Bradley Christensen, Sae Woo Nam, Martin J. Stevens, Lynden K. Shalm
From dice to modern complex circuits, there have been many attempts to build increasingly better devices to generate random numbers. Today, randomness is fundamental to security and cryptographic systems, as well as safeguarding privacy. A key challenge

Superconducting optoelectronic networks I: general principles

April 6, 2018
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Adam N. McCaughan, Jeffrey T. Chiles, Richard P. Mirin, Sae Woo Nam
The design of neural hardware is informed by the prominence of differentiated processing and information integration in cognitive systems. The central role of communication leads to the principal assumption of the hardware platform: signals between neurons

Superconducting optoelectronic networks II: receiver circuits

April 6, 2018
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Adam N. McCaughan, Manuel C. Castellanos Beltran, Christine A. Donnelly, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam
Circuits using superconducting single-photon detectors and Josephson junctions to perform signal reception, synaptic weighting, and integration are investigated. The circuits convert photon-detection events into flux quanta, the number of which is

Deuterated silicon nitride photonic devices for broadband optical frequency comb generation

March 26, 2018
Author(s)
Jeffrey T. Chiles, Nima Nader, Daniel D. Hickstein, Su Peng Yu, Travis Briles, David R. Carlson, Hojoong Jung, Jeffrey M. Shainline, Scott A. Diddams, Scott B. Papp, Sae Woo Nam, Richard P. Mirin
We report and characterize low-temperature, plasma-deposited deuterated silicon nitride films for nonlinear integrated photonics. With a peak processing temperature less than 300°C, it is back-end compatible with complementary metal-oxide semiconductor

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

October 12, 2017
Author(s)
Marcelo I. Davanco, Liu Jin, Luca Sapienza, Chen-Zhao Zhang, Jose Vinicius De Miranda Cardoso, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Liu Liu, Kartik A. Srinivasan
Photonic integration is establishing itself as an enabling technology for photonic quantum science, offering considerably greater scalability, stability, and functionality than traditional bulk optics. Here, we develop a scalable, heterogeneous III-V /

All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors

October 2, 2017
Author(s)
Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Galan Moody, Kevin L. Silverman, Martin J. Stevens, Richard P. Mirin, Sae Woo Nam, Jeffrey M. Shainline
An on-chip, silicon-compatible light source has long been pursued for telecommunications, with limited success. However, for integrated systems utilizing superconducting detectors, cryogenic operation is already required. This allows these systems to

Verification of Calibration Methods for Determining Photon-Counting Detection Efficiency using Superconducting Nano-Wire Single Photon Detectors

September 4, 2017
Author(s)
Igor Vayshenker, Robert D. Horansky, John H. Lehman, Malcolm G. White, Sae Woo Nam, Ingmar Mueller, Lutz Werner, G. Wuebbeler
In the recent years several ways to radiometrically calibrate optical fiber-coupled detectors have been developed. However, fiber-coupled calibration methods for single photon detectors have not been compared by national metrology institutes validating the

Towards integrated superconducting detectors on lithium niobate waveguides

August 29, 2017
Author(s)
Jan P. Hoepker, Moritz Bartnick, Evan Meyer-Scott, Frederik Thiele, Stephan Krapick, Nicola Montaut, Matteo Santandrea, Harald Herrmann, Sebastian Lengeling, Raimund Ricken, Victor Quiring, Torsten Meier, Adriana Lita, Varun Verma, Thomas Gerrits, Sae Woo Nam, Christine Silberhorn, Tim J. Bartley
Superconducting detectors are now well-established tools for low-light optics, and in particular quantum optics, boasting high-efficiency, fast response and low noise. Similarly, lithium niobate is an important platform for integrated optics given its

Modeling Bloch Oscillations in Nanoscale Josephson Junctions

August 7, 2017
Author(s)
Heli C. Vora, Richard Kautz, Sae Woo Nam, Jose A. Aumentado
Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and
Was this page helpful?