Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Superconducting optoelectronic networks II: receiver circuits



Jeffrey M. Shainline, Sonia M. Buckley, Adam N. McCaughan, Manuel C. Castellanos Beltran, Christine A. Donnelly, Michael L. Schneider, Richard P. Mirin, Sae Woo Nam


Circuits using superconducting single-photon detectors and Josephson junctions to perform signal reception, synaptic weighting, and integration are investigated. The circuits convert photon-detection events into flux quanta, the number of which is determined by the synaptic weight. The current from many synaptic connections is inductively coupled to a superconducting loop which implements the neuronal threshold operation. Designs are presented for neurons which perform integration as well as detect coincidence events for temporal coding. Both excitatory and inhibitory connections are demonstrated. It is shown that a neuron with a single integration loop can receive input from 1000 such synaptic connections, and neurons of similar design could employ many loops for dendritic processing.
Physical Review Applied


neural computing, superconductors, integrated photonics, cognition
Created April 6, 2018, Updated July 9, 2019