Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 301

Quantum circuits with many photons on a programmable nanophotonic chip

April 19, 2021
Author(s)
Adriana Lita, Sae Woo Nam, Thomas Gerrits, J. M. Arrazola, V. Bergholm, K Bradler, T R. Bromley, M J. Collins, I Dhand, A Fumagalli, A Goussev, L G. Helt, J Hundal, T Isacsson, R B. Israel, N Quesada, V D. Vaidya, Z Vernon, Y Zhang
Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for loading and executing quantum algorithms. Photonic quantum computers have been limited either to non-deterministic

Characterization of waveguide-integrated single-photon detectors using integratedphotonic structures

February 18, 2021
Author(s)
Sonia M. Buckley, Alexander N. Tait, Jeffrey T. Chiles, Adam N. McCaughan, Saeed Khan, Richard Mirin, Sae Woo Nam, Jeffrey M. Shainline
We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. We demonstrate structures for direct comparison of

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Calibration of free-space and fiber-coupled single-photon detectors

September 14, 2020
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode

Microresonator enhanced, waveguide coupled emission from silicon defect centers for superconducting optoelectronic networks

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Sae Woo Nam, Richard P. Mirin
Superconducting optoelectronic networks could achieve scales unmatched in hardware-based neuromorphic computing. After summarizing recent progress in this area, we report new results in cryogenic silicon photonic light sources, components central to these

Microring resonator-coupled photoluminescence from silicon W centers

July 10, 2020
Author(s)
Alexander N. Tait, Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline
Defect centers are promising candidates for waveguide-integrated silicon light sources. We demonstrate microresonator- and waveguide-coupled photoluminescence from silicon W centers. Observations indicate that wavelengths that are on-resonance with

Compact 1.7 K Cryocooler for Superconducting Nanowire Single-Photon Detectors

June 18, 2020
Author(s)
Vincent Y. Kotsubo, Joel N. Ullom, Sae Woo Nam
State-of-the-art superconductor-based cryogenic detector systems are being installed at numerous research facilities worldwide and are achieving world-record sensitivities in a variety of applications. Implementation has been greatly facilitated by closed

Superconducting microwire detectors with single-photon sensitivity in the near-infrared

June 16, 2020
Author(s)
Jeffrey T. Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam, Jason Allmaras, Boris Korzh, Emma Wollman, Matthew Shaw
We report on the fabrication and characterization of single-photon-sensitive WSi superconducting detectors with wire widths from 1 υm to 3 υm. The devices achieve saturated internal detection efficiency at 1.55 υm wavelength and exhibit maximum count rates

Quantum-enhanced interferometry with large heralded photon-number states

June 14, 2020
Author(s)
G Thekkadath, M.E. Mycroft, B.A. Bell, C.G. Wade, A. Eckstein, David Phillips, R.B Patel, A. Buraczewski, Adriana Lita, Thomas Gerrits, Sae Woo Nam, M. Stobinska, A.I. Lvovsky, Ian Walmsley
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of N entangled photons provides up to a sqrt(N) enhancement in phase sensitivity compared to a

Optimization of photoluminescence from W centers in silicon-on-insulator for waveguide-coupled sources

May 13, 2020
Author(s)
Sonia M. Buckley, Alexander N. Tait, Galan Moody, Kevin L. Silverman, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline, Stephen Olson, Joshua Hermann, Satyvalu Papa Rao
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218\textmu m. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diode sources. Here we optimize

Tuning between photon-number and quadrature measurements with weak-field homodyne detection

March 20, 2020
Author(s)
G Thekkadath, David Phillips, Jacob Bulmer, W.R. Clements, A. Eckstein, B.A. Bell, J Lugani, Adriana Lita, Sae Woo Nam, Thomas Gerrits, C.G. Wade, Ian Walmsley
Variable measurement operators enable optimization of strategies for testing quantum properties and for preparation of a range of quantum states. Here, we experimentally implement a weak-field homodyne detector that can continuously tune between performing

Experimental Low-Latency Device-Independent Quantum Randomness

January 10, 2020
Author(s)
Yanbao Zhang, Lynden K. Shalm, Joshua C. Bienfang, Martin J. Stevens, Michael D. Mazurek, Sae Woo Nam, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Honghao Fu, Carl A. Miller, Alan Mink, Emanuel H. Knill
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum randomness can produce such random bits, but existing quantum-proof protocols and

Detector-Agnostic Phase-Space Distributions

January 9, 2020
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Jan Sperling, David Phillips, Jacob Bulmer, G Thekkadath, A. Eckstein, T Wolterink, J Lugani, Wolfgang Vogel, G.S. Agarwal, Christine Silberhorn, Ian Walmsley
The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof

Calibration of free-space and fiber-coupled single-photon detectors

December 20, 2019
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

November 22, 2019
Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Kartik Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of two essential building blocks for quantum information science - quantum sources and frequency

State-independent quantum tomography of a single-photon state by photon-number-resolving measurements

October 10, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Sae Woo Nam, Rajveer Nehra, Aye Win, Miller Eaton, Niranjan Sridhar, R. Shahrokhshahi, O Pfister
A narrowband single-photon state was generated by heralding cavity-enhanced spontaneous parametric downconversion in a PPKTP optical parametric oscillator. The Wigner quasiprobability distribution function was reconstructed, in a state-independent manner

Nonlinear Silicon waveguides produce tunable frequency combs spanning 2.0-8.5 ?m

September 25, 2019
Author(s)
Nima Nader, Abijith S. Kowligy, Jeffrey T. Chiles, Eric J. Stanton, Henry R. Timmers, Alexander J. Lind, Kimberly Briggman, Scott Diddams, Flavio Caldas da Cruz, Richard Mirin, Sae Woo Nam, Daniel M. Lesko
We present fully air clad suspended-silicon waveguides for efficient nonlinear interactions limited only by the silicon transparency. Novel fork-shaped couplers provide efficient input ( 2 dB) and broadband 3 dB output coupling spanning 6.0-8.5 υm

Quantum interference enables constant-time quantum information processing

July 19, 2019
Author(s)
Thomas Gerrits, Sae Woo Nam, Adriana E. Lita, M. Stobinska, A. Buraczewski, M. Moore, W.R. Clements, J.J. Renema, W.S. Kolthammer, A. Eckstein, I.A. Walmsley
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction, analysis, and compression in diagnostics, astronomy, chemistry, and broadcasting build on the

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

May 20, 2019
Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, Kartik Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has

Towards a source of entangled photon pairs in gallium phosphide

May 9, 2019
Author(s)
Paulina S. Kuo, Peter G. Schunemann, Mackenzie Van Camp, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
We investigate parametric down-conversion in orientation-patterned GaP. Pumped at 865 nm, the signal and idler are at 1350 nm and 2400 nm, respectively.

Generating polarization-entangled photon pairs in domain-engineered PPLN

May 7, 2019
Author(s)
Paulina S. Kuo, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
Using a periodically poled LiNbO3 crystal that is domain-engineered for two simultaneous type-II down-conversion processes, we demonstrated polarization-entangled photon-pair generation.

Integrated transition edge sensors on lithium niobate waveguides

May 7, 2019
Author(s)
Thomas Gerrits, Adriana Lita, Richard Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor. The coupling efficiency strongly depends on the polarization, the overlap between the evanescent
Was this page helpful?