NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Demonstration of a polarization-entangled photon-pair source based on phase-modulated PPLN
Published
Author(s)
Paulina S. Kuo, Varun B. Verma, Sae Woo Nam
Abstract
We develop and demonstrate a source of polarization-entangled photon pairs using spontaneous parametric down-conversion (SPDC) in domain-engineered, periodically poled lithium niobate (PPLN) at telecom wavelengths. Pumped at 775 nm, this domain-engineered type-II SPDC source produces non-degenerate signal and idler pairs at 1530 nm and 1569 nm. Because of birefringence, the photon pair with horizontally polarized signal and vertically polarized idler has a different phasematching condition than the pair with vertically polarized signal and horizontally polarized idler. Using phase-modulation of the domain structure, we produced a crystal that can simultaneously generate both states in a distributed fashion throughout a single crystal. Performing SPDC using this aperiodically poled crystal, we observed polarization entanglement visibility above 93%. We compare the phase-modulated crystal to other aperiodic structures, including dual-periodically-poled and interlaced biperiodic structures
Kuo, P.
, Verma, V.
and Nam, S.
(2020),
Demonstration of a polarization-entangled photon-pair source based on phase-modulated PPLN, OSA Continuum, [online], https://doi.org/10.1364/OSAC.387449
(Accessed October 14, 2025)