Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Circuit designs for superconducting optoelectronic loop neurons



Jeffrey M. Shainline, Adam N. McCaughan, Jeffrey T. Chiles, Richard P. Mirin, Sae Woo Nam, Sonia M. Buckley


We present designs of superconducting optoelectronic neurons based on superconducting single- photon detectors, Josephson junctions, semiconductor light sources, and multi-planar dielectric waveguides. The neurons send few-photon signals to synaptic connections, and these signals communicate neuronal firing events as well as update synaptic weights. Spike-timing-dependent plasticity is implemented with a single photon triggering each step of the process. Circuits combining single-photon detectors with Josephson junctions achieve complex synaptic and neuronal functions with extreme energy efficiency. Microscale semiconductor light sources and networks of dielectric waveguides enable connectivity to thousands of synaptic connections, and the use of light for communication enables synchronization of neuronal pools of area limited only by the light cone.
Journal of Applied Physics


neural computing, superconductors, integrated photonics, cognition


Shainline, J. , McCaughan, A. , Chiles, J. , Mirin, R. , Nam, S. and Buckley, S. (2018), Circuit designs for superconducting optoelectronic loop neurons, Journal of Applied Physics, [online], (Accessed June 22, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created October 11, 2018, Updated October 8, 2020