Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Christopher L. Holloway (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 433

Using Radiation Pressure to Develop a Radio-Frequency Power Measurement Technique Traceable to the Redefined SI

October 15, 2018
Author(s)
Christopher L. Holloway, Matthew T. Simons, David R. Novotny, John H. Lehman, Paul A. Williams, Gordon A. Shaw
We discuss a power measurement technique traceable to the International System of Units based on radiation pressure (or radiation force) carried by an electromagnetic wave. A measurement of radiation pressure offers the possibility for a power measurement

Uncertainties in Rydberg Atom-based RF E-field Measurements

October 8, 2018
Author(s)
Matthew T. Simons, Marcus D. Kautz, Joshua A. Gordon, Christopher L. Holloway
A new atom-based electric (E) field measurement approach (using Rydberg atoms) is being investigated by several groups around the world as a means to develop a new SI-traceable RF E- field standard. For this technique to be useful it is important to

MEMS non-absorbing electromagnetic power sensor employing the effect of radiation pressure

September 8, 2018
Author(s)
Ivan Ryger, Aly Artusio-Glimpse, Paul A. Williams, Gordon A. Shaw, Matt Simons, Christopher L. Holloway, John H. Lehman
We demonstrate a compact electromagnetic power sensor based on force effects of electromagnetic radiation onto a highly reflective mirror surface. Unlike the conventional power measurement approach, the photons are not absorbed and can be further used in

Development and Applications of a Fiber-Coupled Atom-Based Electric Field Probe

August 26, 2018
Author(s)
Christopher L. Holloway, Matt Simons, Josh Gordon
We are developing a fundamentally new atom-based approach for electric (E) field measurements. This new approach will lead to a self-calibrated, SI traceable, E-field measurement, and has the capability to perform measurements on a fine spatial resolution

High-resolution near-field imaging and far-fieldantenna measurements with atomic sensors

August 26, 2018
Author(s)
Christopher L. Holloway, Matt Simons, Dave Anderson, Georg Raithel
—Measurements of radio-frequency (RF) electric fields using atomic sensors based on quantum-optical spectroscopy of Rydberg states in vapors has garnered significant interest in recent years for the establishment of atomic standards for RF electric fields

Fiber-coupled Vapor Cell for a Portable Rydberg Atom-based RF Electric Field Sensor

August 1, 2018
Author(s)
Matthew T. Simons, Joshua A. Gordon, Christopher L. Holloway
We demonstrate a moveable Rydberg atom based radio frequency (RF) electric (E) field probe. The technique is based on electromagnetically-induced transparency (EIT) and Autler-Townes splitting. Two fibers attached to an 10mm cube Cs vapor cell are used to

Generalized Sheet Transition Conditions (GSTCs) for a Metascreen

May 1, 2018
Author(s)
Christopher L. Holloway
Using the multiple-scales homogenization method, we derive generalized sheet transition conditions (GSTCs) for electromagnetic fields at the surface of a metascreen---a metasurface with a ``fishnet'' structure. These surfaces are characterized by
Was this page helpful?