Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Christopher L. Holloway (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 431

A Multi-Band Rydberg-Atom Based Receiver/Antenna: AM/FM Stereo Reception

April 2, 2020
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon
With the re-definition of the International System of Units (SI) that occurred in October of 2018, there has recently been a great deal of attention in the development atom-base sensors for metrology applications. In particular great progress had been made

Embedding a Rydberg Atom-Based Sensor into an Antenna for Phase and Amplitude Detection of Radio Frequency Fields and Modulated Signals

October 22, 2019
Author(s)
Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab, Joshua A. Gordon, David R. Novotny
We demonstrate a Rydberg atom-based sensor embedded in a parallel-plate waveguide (PPWG) for amplitude and phase detection of a radio-frequency (RF) electric field. This embedded atomic sensor is also capable of receiving modulated communications signals

Applications with a Rydberg Atom-based Radio Frequency Antenna/Receiver

September 2, 2019
Author(s)
Matthew T. Simons, Abdulaziz H. Haddab, Joshua A. Gordon, Christopher L. Holloway
We discuss several recent extensions of quantum radio frequency (RF) electric field sensors to antenna/receiver applications. These Rydberg atom-based sensors have been previously studied for SI-traceable RF field measurements. We demonstrate the reception

Detecting and Receiving Phase-Modulated Signals With a Rydberg Atom-Based Receiver

September 2, 2019
Author(s)
Christopher L. Holloway, Matthew T. Simons, Joshua A. Gordon, David R. Novotny
Recently, we introduced a Rydberg-atom based mixer capable of detecting and measuring of the phase of a radio-frequency field through the electromagnetically induced transparency (EIT) and Autler-Townes (AT) effect. The ability to measure phase with this

Carbon Nanotube Thin Film Patch Antennas for Wireless Communications

May 24, 2019
Author(s)
E. A. Bengio, Damir Senic, Lauren W. Taylor, Robert J. Headrick, Michael King, Peiyu Chen, Charles A. Little, John M. Ladbury, Chris Long, Christopher L. Holloway, Aydin Babakhani, James Booth, Nate Orloff
Early work on carbon nanotube (CNT) antennas indicated that their performance could not match that of metals such as copper. However, recent improvements in fluid phase CNT processing have yielded macroscopic CNT materials with better alignment and

A Rydberg Atom-Based Mixer: Measuring the Phase of a Radio Frequency Wave

March 18, 2019
Author(s)
Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab, Joshua A. Gordon
Rydberg atoms have been shown to be very useful in performing absolute measurements of the magnitude of a radio frequency (RF) field using electromagnetically-induced transparency (EIT). However, there has been less success in using Rydberg atoms for the

Rydberg Atom-based RF Power Measurements

November 4, 2018
Author(s)
Matthew T. Simons, Marcus D. Kautz, Abdulaziz H. Haddab, Joshua A. Gordon, Christopher L. Holloway, Thomas P. Crowley
The power transmitted through a waveguide was determined using in-situ atom-based electric field measurements. The field distribution in the waveguide was measured using Rydberg atoms to find the maximum field, which was used to determine the power. For a

Using Radiation Pressure to Develop a Radio-Frequency Power Measurement Technique Traceable to the Redefined SI

October 15, 2018
Author(s)
Christopher L. Holloway, Matthew T. Simons, David R. Novotny, John H. Lehman, Paul A. Williams, Gordon A. Shaw
We discuss a power measurement technique traceable to the International System of Units based on radiation pressure (or radiation force) carried by an electromagnetic wave. A measurement of radiation pressure offers the possibility for a power measurement

Uncertainties in Rydberg Atom-based RF E-field Measurements

October 8, 2018
Author(s)
Matthew T. Simons, Marcus D. Kautz, Joshua A. Gordon, Christopher L. Holloway
A new atom-based electric (E) field measurement approach (using Rydberg atoms) is being investigated by several groups around the world as a means to develop a new SI-traceable RF E- field standard. For this technique to be useful it is important to