Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Atom-Based RF Field Probe: From Self-Calibrated Measurements to Sub-Wavelength Imaging

Published

Author(s)

Christopher L. Holloway

Abstract

In this presentation, we discuss a fundamentally new approach for an electric (E) field probe design. This new approach is significantly different than currently used field probes in that it is based on the interaction of RF-fields with Rydberg atoms (alkali atoms placed in a glass vapor cell are excited optically to Rydberg states). The applied RF-field alters the resonant state of the atoms. The Rydberg atoms act like an RF-to-optical transducer, converting an RF E-field to an optical-frequency response. The RF probe utilizes the concept of Electromagnetically Induced Transparency (EIT). The RF transition in the four-level atomic system causes a split of the EIT transmission spectrum for a probe laser. This splitting is easily measured and is directly proportional to the applied RF field amplitude. The significant dipole response of Rydberg atoms enables this technique to make self-calibrating measurements over a large frequency band including 1-500 GHz. In this paper, we report on our results in the development of this probe. We also discuss two key applications: that is, self-calibrated measurements and sub-wavelength imaging and field mapping.
Conference Dates
July 27-31, 2015
Conference Location
ROME
Conference Title
15th INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY

Keywords

atom-base metrology, Autler-Townes effects, electric field measurements, EIT, sub-wavelength imaging, Rydberg atoms

Citation

Holloway, C. (2015), Atom-Based RF Field Probe: From Self-Calibrated Measurements to Sub-Wavelength Imaging, 15th INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, ROME, -1, [online], https://doi.org/10.1109/NANO.2015.7388728 (Accessed April 26, 2024)
Created July 27, 2015, Updated January 27, 2020