Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Albert Davydov (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 170

Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for 2D Materials Applications

September 13, 2019
Author(s)
Albert Davydov, Sergiy Krylyuk, Kyle J. DiCamillo, Makarand Paranjape, Wendy Shi
An automated technique is presented for mechanically exfoliating single-layer and few-layer transition metal dichalcogenides using controlled shear and normal forces imposed by a parallel plate rheometer. A thin sample that is removed from bulk MoS2 or

Thermal Stability of Titanium Contacts to MoS2

August 30, 2019
Author(s)
Huairuo Zhang, Albert Davydov, Leonid A. Bendersky, Keren M. Freedy, Stephen J. McDonnell
Thermal annealing of Ti contacts is commonly implemented in the fabrication of MoS2 devices however its effects on interface chemistry have not been previously reported in the literature. In this work, the thermal stability of titanium contacts deposited

MoS2 cleaning by acetone and UV-Ozone: Geological vs. synthetic material (Letter)

January 25, 2019
Author(s)
Keren M. Freedy, Sales G. Maria, Sergiy Krylyuk, Albert Davydov, Stephen J. McDonnell
The effects of poly(methyl methacrylate) PMMA removal procedures on the surface chemistry of both geological and chemical vapor deposited (CVD) MoS2 are investigated. X-ray photoelectron spectroscopy is employed following acetone dissolution, thermal

An Ultra-fast Multi-level MoTe2-based RRAM

January 17, 2019
Author(s)
Albert Davydov, Leonid A. Bendersky, Sergiy Krylyuk, Huairuo Zhang, Feng Zhang, Joerg Appenzeller, Pragya R. Shrestha, Kin P. Cheung, Jason P. Campbell
We report multi-level MoTe2-based resistive random-access memory (RRAM) devices with switching speeds of less than 5 ns due to an electric-field induced 2H to 2Hd phase transition. Different from conventional RRAM devices based on ionic migration, the

Black phosphorus tunneling field-effect transistors

December 21, 2018
Author(s)
Albert Davydov, Huairuo Zhang, Leonid A. Bendersky
Band-to-band tunneling field-effect transistors (TFETs)1-7 have emerged as promising candidates to replace conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) for low-power integration circuits and have been demonstrated to overcome

Electric field induced phase transition in vertical MoTe2 and Mo1-xWxTe2 based RRAM devices

December 10, 2018
Author(s)
Feng Zhang, Sergiy Krylyuk, Huairuo Zhang, Cory A. Milligan, Dmitry Y. Zemlyanov, Leonid A. Bendersky, Albert Davydov, Joerg Appenzeller, Benjamin P. Burton, Yugi Zhu
Transition metal dichalcogenides have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature and polymorphism. Here, we report an electric-field-induced structural transition from a 2H

Control of polarity in multilayer MoTe2 field-effect transistors by channel thickness

November 9, 2018
Author(s)
Albert Davydov, Mona Zaghloul, Sergiy Krylyuk, Ratan K. Debnath, Asha Rani, Kyle J. DiCamillo, Payam Taheri
In this study, electronic properties of field-effect transistors (FETs) fabricated from exfoliated MoTe2 single crystals are investigated as a function of channel thickness. The conductivity type in FETs gradually changes from n-type for thick MoTe2 layers

Predicting synthesizability

October 24, 2018
Author(s)
Albert Davydov, Ursula R. Kattner
Advancements in multiscale multi-physics computational materials design have led to accelerated discovery of advanced materials for energy, electronics and engineering applications. For most bulk materials synthesizing and processing procedures are

Electronic Characteristics of MoSe2 and MoTe2 for Nanoelectronic Applications

October 15, 2018
Author(s)
Asha Rani, Shiqi Guo, Sergiy Krylyuk, Albert Davydov
Single-crystalline MoSe2 and MoTe2 platelets were grown by Chemical Vapor Transport (CVT), followed by exfoliation, device fabrication, optical and electrical characterization. We observed that for the field-effect-transistor (FET) channel thickness in

Towards superconductivity in p-type delta-doped Si/Al/Si heterostructures

July 30, 2018
Author(s)
Aruna N. Ramanayaka, Hyun Soo Kim, Joseph A. Hagmann, Roy E. Murray, Ke Tang, Neil M. Zimmerman, Curt A. Richter, Joshua M. Pomeroy, Frederick Meisenkothen, Huairuo Zhang, Albert Davydov, Leonid A. Bendersky
In pursuit of superconductivity in p-type silicon (Si), we are using a single atomic layer of aluminum (Al) sandwiched between a Si substrate and a thin Si epi-layer. The delta layer was fabricated starting from an ultra high vacuum (UHV) flash anneal of

Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1-xWxTe2

March 21, 2018
Author(s)
Ozgur B. Aslan, Isha M. Datye, Michal J. Mleczko, Karen Lau, Sergiy Krylyuk, Alina Bruma, Irina Kalish, Albert Davydov, Eric Pop, Tony F. Heinz
Ultrathin transition metal dichalcogenides (TMDCs) have recently been extensively investigated to understand their electronic and optical properties. Here we study ultrathin Mo0.91W0.09Te2, a semiconducting alloy of MoTe2, using Raman, photoluminescence

Electrochemical Detection of Acetaminophen with Silicon Nanowires

February 8, 2018
Author(s)
Raja Ram Pandey, Hussain S. Alshahrani, Sergiy Krylyuk, Elissa Williams, Albert Davydov, Charles C. Chusuei
Acetaminophen (APAP) is an antipyretic, analgesic agent. Overdose during medical treatment poses a risk for liver failure. Hence, it is important to develop methods to monitor APAP in the body to avoid APAP toxicity. Here, we report an efficient and

Nanoscale Heterogeneities in Monolayer MoSe2 Revealed by Correlated Scanning Probe Microscopy and Tip-Enhanced Raman Spectroscopy

December 26, 2017
Author(s)
Albert Davydov, Sergiy Krylyuk, Payam Taheri, Kirby K. Smithe, Andrey V. Krayev, Connor S. Bailey, Hye R. Lee, Eilam Yalon, Ozgur B. Aslan, Miguel M. Rojo, Tony F. Heinz, Eric Pop
Understanding growth, grain boundaries (GBs), and defects of emerging two-dimensional (2D) materials is key to enabling their future applications. For quick, non-destructive metrology, many studies rely on confocal Raman spectroscopy, whose spatial

Nanowire Aptasensors for Electrochemical Detection of Cell-Secreted Cytokines

October 9, 2017
Author(s)
Ying Liu, Ali Rahimian, Sergiy Krylyuk, Tam Vu, Bruno Crulhas, Gulnaz Stybayeva, Dong-Sik Shin, Albert Davydov, Alexander Revzin, Meruyert Imanbekova
Cytokines are small proteins secreted by immune cells in response to pathogens/infections; therefore these proteins can be used in diagnosing infectious diseases. For example, release of a cytokine interferon (IFN)-γ from T-cells is used for blood-based

The structural phases and vibrational properties of Mo1-xWxTe2 alloys

September 1, 2017
Author(s)
Sean M. Oliver, Ryan Beams, Sergiy Krylyuk, Arunima Singh, Irina Kalish, Alina Bruma, Francesca Tavazza, Iris Stone, Stephan J. Stranick, Albert Davydov, Patrick M. Vora
The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions

Novel Nanofluidic Chemical Cells based on Self-Assembled Solid-State SiO2 Nanotubes

August 30, 2017
Author(s)
Hao Zhu, Haitao Li, Arvind Balijepalli, Joseph W. Robertson, Sergiy Krylyuk, Albert Davydov, John J. Kasianowicz, John S. Suehle, Qiliang Li
Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes on silicon- on-insulator (SOI) substrates have been successfully fabricated and tested. The vertical SiO2 nanotubes with a smooth cavity are built from Si nanowires which

Structural and electrical analysis of epitaxial 2D/3D vertical heterojunctions of monolayer MoS2 on GaN

August 4, 2017
Author(s)
Albert Davydov, Terrance P. O'Regan, Andrew A. Herzing, Dimitry Ruzmetov, Robert A. Burke, Kehao Zhang, A. Glen Birdwell, DeCarlos Taylor, E Byrd, Joshua A. Robinson, Tony G. Ivanov, M R. Neupane, S D. Walck
Integrating two-dimensional (2D) and three-dimensional (3D) semiconductors to realize vertical heterojunctions with novel electronic and optoelectronic properties is gaining interest from the device community. In this study, we utilize an approach that

Fabrication and Characterization of Humidity Sensors based on CVD Grown MoS2 Thin Film

July 25, 2017
Author(s)
Shiqi Guo, Abbas Arab, Sergiy Krylyuk, Albert Davydov, Mona E. Zaghloul
Recent advances in two-dimensional (2D) transition metal dichalcogenides have demonstrated their potential application in chemical sensors. However, the chemical vapor deposition (CVD) grown molybdenum disulfide (MoS2) humidity sensors are still largely

Strain engineering a 4a*?3a charge-density-wave phase in transition-metal dichalcogenide 1T-VSe2

July 19, 2017
Author(s)
Duming Zhang, Jeonghoon Ha, Hongwoo H. Baek, Yang-Hao Chan, Donat F. Natterer, Alline Myers, Joshua D. Schumacher, William Cullen, Albert Davydov, Young Kuk, Mei-Yin Chou, Nikolai Zhitenev, Joseph A. Stroscio
We report a new charge density wave (CDW) structure in strained 1T-VSe2 thin films synthesized by molecular beam epitaxy. The CDW structure is unconventional and exhibits a rectangular 4a×√3a periodicity, as opposed to the previously reported hexagonal 4a

Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS2 by Pulsed Metalorganic Chemical Vapor Deposition

July 12, 2017
Author(s)
Berc Kalanyan, William A. Kimes, Ryan Beams, Stephan J. Stranick, Elias J. Garratt, Irina Kalish, Albert Davydov, Ravindra Kanjolia, James E. Maslar
High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely

Rapid determination of nanowire electrical properties using a dielectrophoresis-well based system

March 28, 2017
Author(s)
Sergiy Krylyuk, Albert Davydov, Marios Constantinou, Kai F. Hoettges, Grigorios P. Rigas, Vlad Stolojan, Maxim Shkunov
The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable variability in the growth of one-dimensional (1D) nanomaterials such as nanowires (NWs) and nanotubes, resulting in highly variable