An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Mingkang Wang, Rui Zhang, Robert Ilic, Yuxiang Liu, Vladimir Aksyuk
All physical oscillators, from optical cavities to mechanical cantilevers, are subject to thermodynamic and quantum perturbations and detection uncertainty, fundamentally limiting how well their resonance frequency can be measured. Many previous studies of
Andre Cidrim, Asier Pineiro Orioli, Christian Sanner, Ross B. Hutson, Jun Ye, Romain Bachelard, Ana Maria Rey
Dipole-dipole interactions lead to frequency shifts which are expected to limit the performance of next generation atomic clocks. In this work, we compute dipolar frequency shifts accounting for the intrinsic atomic multilevel structure in standard Ramsey
Eric B. Norrgard, Stephen Eckel, Christopher L. Holloway, Eric L. Shirley
Precision measurements of quantum systems often seek to probe or must account for the interaction with blackbody radiation. Over the past several decades, much attention has been given to AC Stark shifts and stimulated state transfer. For a blackbody in
Modern microelectronic processors have migrated towards parallel computing architectures with many-core processors. However, such expansion comes with diminishing returns exacted by the high cost of data movement between individual processors. The use of
Jim McCarthy, Karen Reczek, Michael Bartock, Ya-Shian Li-Baboud, Suzanne Lightman, Arthur Scholz, Theresa Suloway, Doug Northrip, Joesph Brule
The national and economic security of the United States (US) is dependent upon the reliable functioning of critical infrastructure. Positioning, Navigation and Timing (PNT) services are widely deployed throughout the critical infrastructure. A disruption
The National Institute of Standards and Technology (NIST) has been working with industry and academia to develop algorithms and technologies to improve the resilience of timing subsystems used in high-performance sensing and control hardware. Resilience
Zhen Qi, Curtis R. Menyuk, Jason Gorman, Adarsh V. Ganesan
Recently, the mechanical analog of optical frequency combs, phononic frequency combs, have been demonstrated in mechanical resonators and have gained interest since their comb frequencies can be in the range of kilohertz to gigahertz. The physical origin
Multipath interference can be a challenging problem in the determination of accurate outdoor and indoor localization. There are methods that exist to mitigate this problem by extracting the multipath parameters, namely, differential attenuation, carrier
Kassiopeia A. Smith, Bryan T. Bosworth, Nicholas R. Jungwirth, Jerome G. Cheron, Nathan D. Orloff, Christian J. Long, Dylan F. Williams, Richard A. Chamberlin, Franklyn J. Quinlan, Tara M. Fortier, Ari D. Feldman
A combination of on-wafer metrology and high-frequency network analysis was implemented to measure the response of transmission-line integrated Er-GaAs and InGaAs photomixers up to 1 THz to support the telecommunication and electronics industry.
June W. Lau, Karl B. Schliep, Michael B. Katz, Vikrant J. Gokhale, Jason J. Gorman
A 300 keV transmission electron microscope was modified to produce broadband pulsed beams, that can be in principle, between 40 MHz to 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key
Over the past two decades, MEMS resonators have received considerable attention for physical, chemical and biological sensing applications. Typically, the operation of MEMS resonant sensors relies on the tracking of a resonance frequency using a feedback
Nathan R. Newbury, Chris Oates, Jun Ye, Guglielmo Tino, A Bassi, G Bianco, K Bongs, L Cacciapuoti, M. L. Chiofalo, X Chen, A Derevianko, W Ertme, N Gaaloul, Patrick Gill, P. W. Graham, J. M. Hogan, L Iess, Mark Kasevich, H Katori, Carsten Klempt, X Lu, Long-Sheng Ma, H Muller, A Peters, N Poli, Rasel E, G Rosi, A Roura, C Salomon, S Schiller, W Sleich, D Schlippert, F Schreck, C Schubert, Sorrentino F, Uwe Sterr, J. W. Thomsen, G Vallone, F Vetrano, P Villoresi, W von Klitzing, P Wolf, Nan Yu, M.S. Zhan
The proposed mission \Space Atomic Gravity Explorer (SAGE) has the scientifi c objective to investigate gravitational waves, dark matter, and other fundamental aspects of gravity as well as the connection between gravitational physics and quantum physics
Gregory Moille, Qing Li, Travis Briles, Su P. Yu, Tara E. Drake, Xiyuan Lu, Ashutosh Rao, Daron Westly, Scott Papp, Kartik Srinivasan
Frequency combs spanning over an octave have been successfully demonstrated on-chip in Kerr nonlinear microresonators, thanks to their large effective nonlinearity and ability to support a suitable dispersion profile. Efficient extraction of intracavity
For two decades, time-resolved transmission electron microscopes (TEM) have relied on pulsed-laser photoemission to generate electron bunches to explore sub-microsecond to sub- picosecond dynamics. Despite the vast successes of photoemission time-resolved
Gregory T. Moille, Qing Li, Xiyuan Lu, Kartik Srinivasan
The Lugiato-Lefever Equation (LLE), first developed to provide a description of spatial dissipative structures in optical systems, has recently made a significant impact in the integrated photonics community, where it has been adopted to help understand
Joshua A. Gordon, Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab
Rydberg atoms have been used for measuring radio-frequency (RF) electric (E)-fields due to their strong dipole moments over the frequency range of 500 MHz-1 THz. For this, electromagnetically induced transparency (EIT) within the Autler-Townes (AT) regime
Hugo Bergeron, Laura C. Sinclair, William C. Swann, Isaac H. Khader, Kevin C. Cossel, Michael A. Cermak, Jean-Daniel Deschenes, Nathan R. Newbury
Optical clock networks promise advances in global navigation, time distribution, coherent sensing, relativity experiments, dark matter searches and other areas1-12. Such networks will need to compare and synchronize clocks over free-space optical links
Su P. Yu, Travis Briles, Gregory Moille, Xiyuan Lu, Scott Diddams, Kartik Srinivasan, Scott Papp
Frequency combs based on nonlinear optical phenomena in integrated photonics are a versatile light source that can explore new applications, including frequency metrology, optical communications, and sensing. We demonstrate robust frequency-control
Laura C. Sinclair, Hugo Bergeron, William C. Swann, Isaac H. Khader, Kevin C. Cossel, Michael A. Cermak, Nathan R. Newbury, Jean-Daniel Deschenes
Platform motion poses significant challenges to high-precision optical time and frequency transfer. We give a detailed description of these challenges and their solutions in comb-based optical two-way time and frequency transfer (O-TWTFT). Specifically, we