Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Blackbody Radiation Noise Broadening of Quantum Systems

Published

Author(s)

Eric B. Norrgard, Stephen Eckel, Christopher L. Holloway, Eric L. Shirley

Abstract

Precision measurements of quantum systems often seek to probe or must account for the interaction with blackbody radiation. Over the past several decades, much attention has been given to AC Stark shifts and stimulated state transfer. For a blackbody in thermodynamic equilibrium, these two effects are determined by the expectation value of photon number in each mode of the Planck spectrum. Here, we explore how the photon number variance of an equilibrium blackbody generally leads to a parametric broadening of the energy levels of quantum systems that is inversely proportional to the square-root of the blackbody volume. We consider the the effect in two cases which are potentially highly sensitive to this broadening: Rydberg atoms and atomic clocks. We find that even in blackbody volumes as small as 1\,cm$^3$, this effect is unlikely to contribute meaningfully to transition linewidths.
Citation
Physical Review A (Atomic, Molecular and Optical Physics)

Keywords

Thermodynamic Equilibrium, Blackbody, Frequency Standards, Rydberg

Citation

Norrgard, E. , Eckel, S. , , C. and , E. (2021), Blackbody Radiation Noise Broadening of Quantum Systems, Physical Review A (Atomic, Molecular and Optical Physics), [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931046 (Accessed July 31, 2021)
Created April 22, 2021