NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Modern microelectronic processors have migrated towards parallel computing architectures with many-core processors. However, such expansion comes with diminishing returns exacted by the high cost of data movement between individual processors. The use of optical interconnects1,2 has burgeoned as a promising technology that can address the limits of this data transfer. While recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, this approach will eventually saturate the usable bandwidth, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed3–6. Here we demonstrate an integrated intra- and inter-chip multi-dimensional communication scheme enabled by photonic inverse design. Using inverse-designed mode-division multiplexers, we combine wavelengthand mode- multiplexing and send massively parallel data through nano-photonic waveguides and optical fibres. Crucially, as we take advantage of an orthogonal optical basis, our approach is inherently scalable to a multiplicative enhancement over the current state of the art.
Briles, T.
, Stone, J.
and Papp, S.
(2021),
Inverse-designed multi-dimensional silicon photonic transmitters, ArXiV, [online], https://arxiv.org/abs/2103.14139
(Accessed October 7, 2025)