An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Isaac H. Khader, Laura C. Sinclair, William C. Swann, Hugo Bergeron, Nathan R. Newbury, Jean-Daniel Deschenes
Free space optical (FSO) communication channels are typically used to transmit high-speed data between sites over the air. Here we repurpose an FSO digital communication system and use it directly for two-way time transfer. We demonstrate real-time
Laura C. Sinclair, Hugo Bergeron, William C. Swann, Jean-Daniel Deschenes, Nathan R. Newbury
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) across a turbulent air path. Through the two-way exchange of optical pulse trains from phase- stabilized frequency combs, carrier-phase OTWTFT continuously tracks
This paper reports the first use of dynamic photoelastic imaging for identifying in-plane vibration modes in high-frequency MEMS resonators. In a set of width-extensional mode resonators (WE-BARs), we map fundamental width-extensional modes and unwanted
This paper reports on the design and implementation of an analog feedback controller for generating parametric resonance in linear microresonators that do not intrinsically demonstrate this phenomenon. It is shown that the controller produces a fundamental
Laura C. Sinclair, Ian R. Coddington, William C. Swann, Kana Iwakuni, Nathan R. Newbury
We demonstrate a completely polarization-maintaining fiber frequency comb operating at a 200 MHz repetition rate and show stability and noise performance consistent with precision measurement applications. This design is compatible with a robust, fieldable
Jonathan E. Hardis, Demetrios Matsakis, Blair Fonville
Due to the efforts of Henry Warren, inventor of the Telechron electric clock, electric power companies have been a source of time and frequency reference for the public for over a hundred years. However, advances in technology and changes in the electric
Laura C. Sinclair, William C. Swann, Hugo Bergeron, Esther Baumann, Michael A. Cermak, Ian R. Coddington, Jean-Daniel Deschenes, Fabrizio R. Giorgetta, Juan Juarez, Isaac H. Khader, Keith G. Petrillo, Katherine T. Souza, Michael L. Dennis, Nathan R. Newbury
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the
Adam J. Fleisher, David A. Long, Zachary D. Reed, David F. Plusquellic, Joseph T. Hodges
Multiheterodyne spectroscopy performed with two stabilized optical frequency combs (OFCs) has shown great potential as a fast, accurate, and high-resolution substitute for existing interferometry methods that require lengthy integration times and precision
Hugo Bergeron, Laura C. Sinclair, William C. Swann, Craig Nelson, Jean-Daniel Deschenes, Esther Baumann, Fabrizio R. Giorgetta, Ian R. Coddington, Nathan R. Newbury
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master
In the face of growing concern about spoofing attacks on GNSS transmissions, we propose a scheme to cross validate GNSS based timing against intrinsic properties of local hardware oscillators. We demonstrate our approach as being able to detect certain
Laura C. Sinclair, William C. Swann, Jean-Daniel Deschenes, Hugo Bergeron, Fabrizio R. Giorgetta, Esther Baumann, Michael A. Cermak, Ian R. Coddington, Nathan R. Newbury
Synchronization of optical clocks via optical two-way time-frequency transfer across free-space links can result in time offsets between the two clocks below tens of femtoseconds over many hours. The complex optical system necessary to support such
Jean-Daniel Deschenes, Laura C. Sinclair, Fabrizio R. Giorgetta, William C. Swann, Esther Baumann, Hugo Bergeron, Michael A. Cermak, Nathan R. Newbury
The use of optical clocks/oscillators in future ultra-precise navigation, gravitational sensing, and relativity experiments will require time comparison and synchronization over terrestrial or satellite free-space links. Here we demonstrate full
Aviral Shrivastava, J C. Eidson, Marc A. Weiss, Ya-Shian Li-Baboud, Hugo Andrade, Patricia Derler, Kevin Stanton
Timing and synchronization play a key role in advanced cyber-physical systems (CPS). Precise timing, as often required in safety-critical CPS, depends on hardware support for enforcement of periodic measure, compute, and actuate cycles. For general CPS
Laura C. Sinclair, Jean-Daniel Deschenes, Lindsay I. Sonderhouse, William C. Swann, Isaac H. Khader, Esther Baumann, Nathan R. Newbury, Ian R. Coddington
We describe design and operation of a robust self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, high signal-to-noise ratio (SNR) detection of
Joseph T. Hodges, A. Cygan, P. Wcislo, S. Wojtewicz, Piotr Maslowski, R. Ciurylo, D Lisak
Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are
Nathan D. Orloff, Jan Obrzut, Christian J. Long, Thomas F. Lam, James C. Booth, David R. Novotny, James A. Liddle, Pavel Kabos
The non-uniform fields that occur due to the slot in the cavity through which the sample is inserted and those due to the sample geometry itself decrease the accuracy of dielectric characterization by cavity perturbation at microwave frequencies. To
Young-Jin Kim, Ian R. Coddington, William C. Swann, Nathan R. Newbury, Joohyung Lee, Seungchul Kim, Seung-Woo Kim
We report a time-domain method of stabilizing the carrier-envelope phase (CEP) of femtosecond pulses. Temporal variations of the pulse envelope and the carrier electric-field phase were separately detected with the aid of intensity cross-correlation and
Laura C. Sinclair, Ian R. Coddington, William C. Swann, Archita Hati, Kana Iwakuni, Nathan R. Newbury
Frequency combs can support cutting-edge measurements in areas that include optical clocks and oscillators, high-accuracy frequency and time transfer, precision spectroscopy from the UV to THz regimes, high-accuracy LIDAR, precise microwave photonics, and
Laura C. Sinclair, Fabrizio R. Giorgetta, William C. Swann, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
The time of flight for a laser beam through the atmosphere will fluctuate as the path-averaged index of refraction varies with atmospheric turbulence, air temperature, and pressure. We measure these fluctuations by transmitting optical pulses from a
An overview of time metrology, with emphasis on time interval measurements, and time synchronization. It covers the evolution of clocks and timekeeping, time scales, the fundamentals of time measurement, and the various time transfer technique used to
Nathan R. Newbury, Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann, Ian R. Coddington
We discuss optical two-way time and frequency transfer over air to connect remote optical clocks/oscillators. This method can link remote sites with a residual timing noise of femtoseconds and a residual fractional accuracy below 10^-18.
Laura C. Sinclair, Fabrizio R. Giorgetta, William C. Swann, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
Atmospheric optical path-length variations are measured across a 2-km optical link through a frequency comb-based system with femtosecond-level precision. Without mitigation, the turbulent piston effect will severely restrict time-frequency transfer from
William C. Swann, Fabrizio R. Giorgetta, Laura C. Sinclair, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
Precision free-space time-frequency transfer could advance fields where present microwave-based transfer is inadequate. We demonstrate an optical free-space link with femtosecond timing deviation and residual instability below 10 −18 at 1000 seconds.
Laura C. Sinclair, Ian R. Coddington, William C. Swann, Nathan R. Newbury
We demonstrate a completely polarization-maintaining fiber frequency comb operating at a 200 MHz repetition rate and show initial phase-locking of the carrier-envelope offset frequency. This design is compatible with a robust, fieldable frequency comb.
Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann, Ian R. Coddington, Nathan R. Newbury
The transfer of high-quality time-frequency signals between remote locations underpins many applications, including precision navigation and timing, clock-based geodesy, long-baseline interferometry, coherent radar arrays, tests of general relativity and