NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kyle McKay, Dustin Hite, Philip D. Kent, Shlomi S. Kotler, Dietrich Leibfried, Daniel Slichter, Andrew C. Wilson, David P. Pappas
We demonstrate the use of a single trapped ion as a sensor to probe electric-field noise from interchangeable test surfaces. As proof of principle, we measure the magnitude and distance dependence of electric-field noise from two ion-trap-like samples with
Anjun Chun, Peiru He, James K. Thompson, Ana Maria Rey
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel
Coherent states are used to prepare a crystal using the Atomic Frequency Comb protocol for quantum memory. Here, semiclassical theory is developed and compared to experimental photon echoes of a coherent pulse.
John Kitching, Gabriela Martinez, A, Gregazzi, Paul Griffin, Aidan Arnold, D. P. Burt, Rodolphe Bouldot, Erling Riis, James McGilligan
We demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming the
Chenglong You, Mingyuan Hong, Peter Bierhorst, Adriana Lita, Scott Glancy, Steven Kolthammer, Emanuel Knill, Sae Woo Nam, Richard Mirin, Omar Magana-Loaiza, Thomas Gerrits
The quantum statistical fluctuations of the electromagnetic field establish fundamental limits on the sensitivity of optical measurements. This fundamental limit, known as the shot-noise limit, imposes constraints on classical technologies, which can be
Nicole Halpern, Naga Kothakonda, Jonas Haferkamp, Anthony Munson, Jens Eisert, Philippe Faist
Quantum complexity is emerging as a key property of many-body systems, including black holes, topological materials, and early quantum computers. A state's complexity quantifies the number of computational gates required to prepare the state from a simple
Michael Gullans, David A. Huse, Stefan Krastanov, Liang Jiang, Steven T. Flammia
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D ≥ 1
Mingkang Wang, Rui Zhang, Robert Ilic, Yuxiang Liu, Vladimir Aksyuk
All physical oscillators, from optical cavities to mechanical cantilevers, are subject to thermodynamic and quantum perturbations and detection uncertainty, fundamentally limiting how well their resonance frequency can be measured. Many previous studies of
Corey Rae McRae, Joshua Combes, Gregory Stiel, Haozhi Wang, Sheng Xiang Lin, David P. Pappas, Josh Mutus
As the field of superconducting quantum computing approaches maturity, optimization of single-device performance is proving to be a promising avenue toward large-scale quantum computers. However, this optimization is possible only if performance metrics
Robert Sutherland, Shaun Burd, Daniel Slichter, Stephen Libby, Dietrich Leibfried
Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with
Kevin Gilmore, Matthew Affolter, Judith Jordan, Diego Barberena, Robert Lewis-Swan, Ana Maria Rey, John J. Bollinger
Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a core
Jacob Taylor, Daniel Carney, Hartmut Haffner, David Moore
Electrons and ions trapped with electromagnetic fields have long served as important high- precision metrological instruments, and more recently have also been proposed as a platform for quantum information processing. Here we point out that these systems
Ananya Sitaram, Gretchen K. Campbell, Alessandro Restelli
Most atomic physics experiments are controlled by a digital pattern generator used to synchronize all equipment by providing triggers and clocks. Recently, the availability of well-documented open-source development tools has lifted the barriers to using
Daniel Cole, Jenny Wu, Stephen Erickson, Panyu Hou, Andrew C. Wilson, Dietrich Leibfried, Florentin Reiter
We present protocols for dissipative entanglement of three trapped-ion qubits, and we discuss in detail a scheme that uses sympathetic cooling as the dissipation mechanism. This scheme relies on tailored destructive interference to generate one of six
Marcelo I. Davanco, Oliver Iff, Simon Betzold, Magdalena Moczala-Dusanowska, Matthias Wurdack, Monika Emmerling, Sven Hofling, Christian Schneider
Circular Bragg gratings compose a very appealing photonic platform and nanophotonic interfacefor the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration ofexfoliated monolayers of WSe2with GaInP Bragg gratings
Daniel J. Lum, Michael Mazurek, Alexander Mikhaylov, Kristen M. Parzuchowski, Ryan M. Wilson, Marcus Cicerone, Ralph Jimenez, Thomas Gerrits, Martin Stevens, Charles Camp
In this work, we demonstrate the preservation of time-energy entanglement of near-IR photons through thick biological media ( 1.55 mm) and tissue ( 235 um) at room temperature. Using a Franson-type interferometer, we demonstrate interferometric contrast of
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, Samuel Neyens, Evan MacQuarrie, Mark A. Eriksson, Jacob Taylor
Quantum dots (QDs) defined with electrostatic gates are a leading platform for a scalable quantum computing implementation. However, with increasing numbers of qubits, the complexity of the control parameter space also grows. Traditional measurement
Single photons are a key, fundamental element of most quantum optical technologies, be it for the development of large-scale quantum communication networks, for quantum simulation, or for connecting quantum memories in a quantum computer. The ideal single
Thomas Gerrits, Sae Woo Nam, Adriana Lita, M. Stobinska, T Sturges, A. Buraczewski, W.R. Clements, Jelmer J. Renema, Ian Walmsley
Topological insulators could profoundly impact the fields of spintronics, quantum computing and low-power electronics. To enable investigations of these non-trivial phases of matter beyond the reach of present-day experiments, quantum simulations provide
Major improvements have been made on semiconductor quantum dot light sources recently and now they can be seen as a serious candidate for near-future scalable photonic quantum information processing experiments. The three key parameters of these photon
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Marty Stevens, Krister Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal