NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.
The second-stage regenerators of pulse tube refrigerators (PTRs) are routinely used to intercept heat loads without disturbing cooling at their base temperatures, often near 4 K. Gifford-McMahon cryocoolers (GMCs) have not yet demonstrated a similar
Isaac H. Kim, Bowen Shi, Kohtaro Kato, Victor Albert
A (2+1)-dimensional gapped quantum many-body system can have a topologically protected energy current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral central charge c_-, a quantity associated with the
Stephen Erickson, Jenny Wu, Panyu Hou, Daniel Cole, Shawn Geller, Alexander Kwiatkowski, Scott Glancy, Emanuel Knill, Daniel Slichter, Andrew C. Wilson, Dietrich Leibfried
We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a 9Be+ qubit ion is mapped to a 25Mg+ readout ion using laser-driven Raman transitions. By partitioning the 9Be+ ground-state
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms. Typical applications range from quantum chemistry to optimization problems and
Cori Haws, Biswarup Guha, Edgar Perez, Marcelo Davanco, Jin Dong Song, Kartik Srinivasan, Luca Sapienza
Being able to combine different materials allows taking advantage of different properties and device engineering that cannot be found or exploited within a single system. In the realm of quantum and nanophotonics, for instance, one might want to increase
Michael Gullans, Adam Mills, Charlie Guinn, Anthony Sigillito, Mayer Feldman, Nielsen Erik, Jason Petta
Silicon spin qubits satisfy the necessary criteria for quantum information processing. However, precision is required to support error correction, namely high accuracy state preparation and readout as well as high fidelity single- and two-qubit control. We
Maxime Malnou, Joe Aumentado, Michael Vissers, Jordan Wheeler, Johannes Hubmayr, Joel Ullom, Jiansong Gao
Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4\,K, typically a high-electron mobility transistor (HEMT). Despite its remarkable noise performance, a conventional HEMT dissipates several
Chaitali Joshi, Ben Sparkes, Alessandro Farsi, Thomas Gerrits, Sae Woo Nam, Varun Verma, Sven Ramelow, Alex Gaeta
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for several applications in quantum information science. In this work, we report an all-optical time lens based on Bragg-scattering four
Logan Howe, Manuel Castellanos Beltran, Adam Sirois, David Olaya, John Biesecker, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins
Scaling of quantum computers to fault-tolerant levels relies critically on the integration of energy-efficient, stable, and reproducible qubit control and readout electronics. In comparison to traditional semiconductor-control electronics (TSCE) located at
John Bartolotta, Simon Jager, Jarrod Reilly, Matthew Norcia, James K. Thompson, Graeme Smith, Murray Holland
In the eld of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the validity
Noah Lupu-Gladstein, Y. Batuhan Yilmaz, David Arvidsson-Shukur, Aharon Brodutch, Arthur Pang, Aephraim Steinberg, Nicole Halpern
Operator noncommutation, a hallmark of quantum theory, limits measurement precision, according to uncertainty principles. Wielded correctly, though, noncommutation can boost precision. A recent foundational result relates a metrological advantage with
Piezoelectric optomechanical platforms represent one of the most promising routes towards achieving quantum transduction of photons between the microwave and optical frequency domains. However, there are signif icant challenges to achieving near-unity
Joshua Ziegler, Thomas McJunkin, Emily Joseph, Sandesh Kalantre, Benjamin Harpt, Donald Savage, Max Lagally, Mark Eriksson, Jacob Taylor, Justyna Zwolak
The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected failures when noisy or otherwise low-quality data is processed by an autonomous system. In this
Cori Haws, Edgar Perez, Marcelo Davanco, Jin Dong Song, Kartik Srinivasan, Luca Sapienza
To implement quantum light sources based on quantum emitters in applications, it is desirable to improve the extraction efficiency of single photons. In particular controlling the directionality and solid angle of the emission are key parameters, for
Oliver T. Slattery, Xiao Tang, Lijun Ma, Thomas Gerrits, Anouar Rahmouni, Sumit Bhushan
Research in the Quantum Communications and Networking Project in NIST's Information Technology Laboratory (ITL) focuses on developing quantum devices and studying them for use in quantum communications and quantum networking applications. Here, we review
Florian Kranzl, Aleksander Lasek, Manoj Joshi, Amir Kalev, Rainer Blatt, Christian Roos, Nicole Halpern
Quantum simulators have recently enabled experimental observations of quantum many-body systems' internal thermalisation. Often, the global energy and particle number are conserved, and the system is prepared with a well-defined particle number—in a
Michael Gullans, Zabalo Aidan, Justin Wilson, Romain Vasseur, Andreas Ludwig, Sarang Gopalakrishnan Gopalakrishnan, David Huse, Jed Pixley
Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantitatively
We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay. The method builds on the discrete truncated Wigner approximation for isolated systems, which combines the mean-
Son Le, Albert Rigosi, Joseph Hagmann, Christopher Gutierrez, Ji Ung Lee, Curt A. Richter
The emergence of interference is observed in the resistance of a graphene annulus pn junction device as a result of applying two separate gate voltages. The observed resistance patterns are carefully inspected, and it is determined that the position of the
K. Wurtz, B.M. Brubaker, Y. Jiang, Elizabeth Ruddy, Dan Palken, Konrad Lehnert
In cavity-based axion dark matter detectors, quantum noise remains a primary barrier to achieving the scan rate necessary for a comprehensive search of the axion parameter space. Here we introduce a method of scan rate enhancement in which an axion