NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Closed-cycle dilution refrigerators (DRs) recirculate 3He from the still via condensation on a cooled surface; condensate from the cooled surface drips down toward the mixing chamber via gravity. Compact versions of these DRs are being considered for
The total power flow through cryocooler regenerators is key to their performance because it reduces the cooling available at the cold heat exchanger. At temperatures near 4 K, the real-fluid properties of helium and the finite-heat-capacity of regenerator
An expository article (aimed at the general mathematics community) about quantum cryptography and the philosophy of applied mathematics. The article focuses on quantum coin-flipping, a research problem that has a particularly long history.
Michael Gullans, Pierre-Gabriel Rozon, Kartiek Agarwal
We provide a systematic approach for constructing approximate quantum many-body scars (QMBS) starting from two-layer Floquet automaton circuits that exhibit trivial many-body re- vivals. We do so by applying successively more restrictions that force local
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results
Italo Pereira Bezerra, Hilma Vasconcelos, Scott Glancy
We present a method to estimate the amount of squeezing and temperature of a single-mode Gaussian harmonic oscillator state based on the weighted least squares estimator applied to measured Fock state populations. Squeezing and temperature, or equivalently
Kaifeng Cui, Jose Valencia, Kevin Boyce, Ethan Clements, David Leibrandt, David Hume
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like
Yusuf Alnawakhtha, Atul Mantri, Carl A. Miller, Daochen Wang
Trapdoor claw-free functions (TCFs) are immensely valuable in cryptographic interactions between a classical client and a quantum server. Typically, a protocol has the quantum server prepare a superposition of two bit strings from a claw and then measure
We observed backward-wave spontaneous parametric downconversion in sub-µm periodically poled Rb-doped KTP. Pumped at 800 nm, forward-wave signal at 1400 nm and backward-wave idler at 1868 nm were obtained.
Edge computing network and quantum network are two emerging technologies in current communication fields. Edge computing has emerged to support the computational demand of delay-sensitive applications in which substantial computing and storage are deployed
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical
Ryan DeCrescent, Zixuan Wang, Poolad Imany, Robert Boutelle, Corey McDonald, Travis Autry, John Teufel, Sae Woo Nam, Richard Mirin
Surface acoustic waves (SAWs) coupled to quantum dots (QDs), trapped atoms and ions, and point defects have been proposed as quantum transduction platforms, yet the requisite coupling rates and cavity lifetimes have not been experimentally established
Ting-Wei Hsu, Wenqi Zhu, Tobias Thiele, Mark Brown, Scott Papp, Amit Agrawal, Cindy Regal
Single neutral atoms in optical tweezers have become an important platform for quantum simulation, computing, and metrology [1-3]. With ground-up control similar to trapped ions, individual atoms can be prepared and entangled [2, 4, 5], and the scalability
Anthony M. Polloreno, Ana Maria Rey, John J. Bollinger
Trapped ions boast long coherence times, and excellent gate fidelities, making them a useful platform for quantum information processing. Scaling to larger numbers of ion qubits, potentially solved by photonic interconnects between Paul traps, or by
The second-stage regenerators of pulse tube refrigerators are routinely used to intercept heat in cryogenic systems; however, optimal methods for heat sinking to the regenerator have not been studied in detail. We investigated intermediate cooling methods
Anouar Rahmouni, Thomas Gerrits, Oliver T. Slattery
The aim of this work is to develop low-cost, portable/rack-mounted, robust, and reliable tools for a quantum network testbed. We report our progress on the development of well-reference prototypes of sources and receivers.
A detection efficiency measurement system for free-space single-photon detectors has been established at the National Research Council (NRC) Canada. This measurement apparatus incorporates an 850 nm fiber laser source and utilizes a double-attenuation and
Abstract Quantum systems are generally open to a large environment composed of, e.g., photons or phonons. The environment can make measurements on those systems, amplifying and transmitting select information about them. Other systems or observers can then
Michael G. Huber, Charles W. Clark, Dmitry Pushin, Connor Kapahi, Lisa DeBeer-Schmitt, David Cory, Huseyin Ekinci, Melissa Henderson, Dusan Sarenac
Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.