Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission

Published

Author(s)

Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Martin Stevens, Lynden Shalm, Howard Wiseman

Abstract

Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal wavefunction collapse. Because this would entail faster-than-light (FTL) information transmission, he doubted that it would be seen experimentally. Here we report a demonstration of EPR steering with entangled photon pairs that puts—in Schrödinger's interpretation—a non-zero lower bound on the amount of FTL information transmission. We develop a family of n-setting loss-tolerant EPR-steering inequalities allowing for a size-d classical message sent from Alice's laboratory to Bob's. For the case n = 3 and d = 2 (one bit) we observe a statistically significant violation. Our experiment closes the efficiency and locality loopholes, and we address the freedom-of-choice loophole by using quantum random number generators to independently choose Alice's and Bob's measurement basis settings. To close the efficiency and locality loopholes simultaneously, we introduce methods for quickly switching between three mutually unbiased measurement bases and for accurately characterizing the efficiency of detectors. From the space-time arrangement of our experiment, we can conclude that if the mechanism for the observed bipartite correlations is that Alice's measurement induces wave-function collapse of Bob's particle, then more than one bit of information must travel from Alice to Bob at more than three times the speed of light.
Citation
Physical Review X

Keywords

quantum optics, entanglement, quantum foundations, experimental quantum foundations

Citation

Xiang, Y. , Mazurek, M. , Bienfang, J. , Wayne, M. , Abellan, C. , Amaya, W. , Mitchell, M. , Mirin, R. , , S. , He, Q. , Stevens, M. , Shalm, L. and Wiseman, H. (2021), Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission, Physical Review X (Accessed June 17, 2021)
Created June 9, 2021