NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Quantum Enhanced Cavity QED Interferometer with Partially Delocalized Atoms in Lattices
Published
Author(s)
Anjun Chun, Peiru He, James K. Thompson, Ana Maria Rey
Abstract
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states combined with the subsequent application of a compound pulse sequence that allows to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface make our setup ideal for sensing short-range forces. We show that for arrays of 104 atoms, our protocol can reduce the required averaging time by a factor of 10^4^ compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.
Chun, A.
, He, P.
, Thompson, J.
and Rey, A.
(2021),
Quantum Enhanced Cavity QED Interferometer with Partially Delocalized Atoms in Lattices, Physical Review Letters, [online], https://doi.org/10.1103/PhysRevLett.127.210401, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932201
(Accessed October 21, 2025)