An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Cale M. Gentry, Jeff Shainline, Mark W. Wade, Martin Stevens, Shellee D. Dyer, Xiaoge Zeng, Fabio Pavanello, Thomas Gerrits, Sae Woo Nam, Richard Mirin, Milos A. Popovic
Correlated photon pairs are a fundamental component of quantum photonic systems. While pair sources have previously been integrated on silicon chips in custom facilities, these often take advantage of only a small fraction of microelectronics fabrication
In this chapter we introduce the set of detector properties, common to most contemporary detectors, that should be determined for a complete characterization. Then we introduce methods for detector characterization, and finally we present practical recipes
Quantum entanglement is the fundamental resource for quantum information processing and communications, including secure data rates with higher capacities and better error resilience [1-9]. In dense-coded quantum communication channels, it is desirable to
Florent Q. Lecocq, John D. Teufel, Jose A. Aumentado, Raymond W. Simmonds
Heisenberg's uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However
We present an approach for entangling electron spin qubits localized on spatially separated impurity atoms or quantum dots via a multi-electron, two-level quantum dot. The effective exchange interaction mediated by the dot can be understood as the simplest
High efficiency single-photon detectors allow novel measurements in quantum information processing and quantum photonic systems. The photon-number resolving transition edge sensor (TES) is known for its near-unity detection efficiency and has been used in
Hiroki Takesue, Shellee D. Dyer, Martin Stevens, Varun Verma, Richard Mirin, Sae Woo Nam
Using high-efficiency superconducting nanowire single-photon detectors based on MoSi, we successfully achieved quantum teleportation of weak coherent states over 100 km of fiber with an average fidelity of 82.9 = + or -} 1.7% for six distinct input states
Michael S. Allman, Varun B. Verma, Martin J. Stevens, Thomas Gerrits, Robert D. Horansky, Adriana E. Lita, Francesco Marsili, A. Beyer, Matthew Shaw, D. Kumor, Richard P. Mirin, Sae Woo Nam
We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the
Michael Gullans, Yinyiu Liu, George Stehlik, Jason Petta, Jacob M. Taylor
We develop a microscopic model for the recently demonstrated double quantum dot (DQD) maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from transitions
Thomas Gerrits, Michael S. Allman, Daniel Lum, Varun B. Verma, John Howell, Richard P. Mirin, Sae Woo Nam
We present our results on utilizing a superconducting nanowire single photon detector array and compressive imaging techniques to perform single photon imaging and present our results on a high-resolution single-photon camera.
W.Bertrand (Randy) Doriese, Joseph Fowler, Daniel Swetz, Cherno Jaye, Daniel A. Fischer, Carl D. Reintsema, Douglas Bennett, Leila R. Vale, Gene C. Hilton, Dan Schmidt, Joel Ullom, Jens Uhlig, Ujjwal Mandal, Galen O'Neil, Luis Miaja Avila, Young I. Joe, wilfrid fullagar, Fredrick P. Gustafsson, Dharma Kurunthu, Villy Sundstrom
X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low
Elizabeth A. Goldschmidt, Roger C. Brown, Silvio B. Koller, Michael S. Foss-Feig, James V. Porto, Robert Wyllie
The interplay of spin and motion underlies some of the most intriguing and poorly understood behaviors in many-body quantum systems. A well known example is the onset of superconductivity in cuprate compounds when mobile holes are introduced into an
Thomas Gerrits, Michael Fortsch, Martin J. Stevens, Dmitry Strekalov, Gerhard Schunk, Josef Furst, Ulrich Vogl, Florian Sedlmeir, Harald G. Schwefel, Gerd Leuchs, Christoph Marquardt
We demonstrate a method to perform spectroscopy of near-infrared single photons without the need of dispersive elements. This method is based on a photon energy resolving transition edge sensor and is applied for the characterization of a widely wavelength
Isolated qubits are a special class of quantum devices, which can be used to implement tamper-resistant cryptographic hardware such as one-time memories (OTM's). Unfortunately, these OTM constructions leak some information, and standard methods for privacy
Varun B. Verma, Boris Korzh, Felix Bussieres, Robert D. Horansky, Shellee D. Dyer, Adriana E. Lita, Igor Vayshenker, Francesco Marsili, Matthew D. Shaw, Hugo Zbinden, Richard P. Mirin, Sae Woo Nam
We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 ± 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76 ps
Sergey V. Polyakov, Fabrizio Piacentini, Filippo Levi, A Avella, M Lopez, Stefan Kuck, Ivo P. Degiovanni, Giorgio Brida, Marco Genovese
Here we present a reconstruction of the Positive Operator-Value Measurement of a photon-number-resolving detector comprised of three 50:50 beamsplitters in a tree configuration, terminated with four single-photon avalanche detectors.
In superconducting quantum information, machined aluminum superconducting cavities have proven to be a well-controlled, low-dissipation electromagnetic environment for quantum circuits such as qubits. They can possess large internal quality factors, Qint >
B. G. Christensen, A. Hill, P. G. Kwiat, Emanuel Knill, Sae Woo Nam, Kevin Coakley, Scott Glancy, Krister Shalm, Y. Zhang
We apply a distance-based Bell-test analysis method ["Bell inequalities for continuously emitting sources" E. Knill et al. arXiv:14097732 (2014)] to three experimental data sets where conventional analyses failed or required additional assumptions. The
Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the even
Michael Fortsch, Gerhard Schunk, Josef Furst, Dmitry Strekalov, Thomas Gerrits, Martin Stevens, Florian Sedlmeir, Harald G. Schwefel, Gerd Leuchs, Christoph Marquardt
We report on the highly-efficient generation of narrow-band pair-photons in one single spatiotemporal mode using parametric down-conversion in a crystalline whispering gallery mode resonator. We developed the requirements on phase-matching conditions in
In this work we derive the general conditions for obtaining nonreciprocity in multi-mode parametrically- coupled systems. The results can be applied to a broad variety of optical, microwave, and hybrid systems including recent electro- and opto-mechanical
Jacob M. Taylor, K. Lim, Chad Ropp, Benjamin Shapiro, Edo Waks
We demonstrate localized magnetometry using a single nitrogen vacancy (NV) center in a microfluidic device. Our approach can manipulate magnetic objects in three dimensions within a liquid environment and also orients their magnetic dipole. A diamond
Tian Zhong, Hongchao Zhou, Rob Horansky, Catherine Lee, Varun Verma, Adriana Lita, Alessandro Restelli, Joshua Bienfang, Richard Mirin, Thomas Gerrits, Sae Woo Nam, Francesco Marsili, Zhenshen Zhang, Ligong Wang, Dirk Englund, Gregory Wornell, Jeffrey Shapiro, Franco N. Wong
Quantum key distribution (QKD) is a secure communication technology whose security is guaranteed by the laws of physics. However, its widespread use has been hindered in part by low secure-key throughput due to the inherent loss and de-coherence of photons
Thomas Gerrits, Francesco Marsili, Varun B. Verma, Lynden K. Shalm, Jeffrey A. Stern, Matthew Shaw, Richard P. Mirin, Sae Woo Nam
We present an efficient tool capable of measuring the spectral correlations between photons emerging from a Hong-Ou-Mandel interference configuration. We show that the Hong-Ou-Mandel interference visibility decreases as the photons frequency spread is