An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly
We present an on-chip cavity optomechanical transducer platform that combines high measurement bandwidth and very low displacement noise floor with compactness, robustness, small size, and potential for low cost batch fabrication inherent in micro- electro
A combination of optical knife-edge and photoelastic modulation measurement techniques are presented, which are used to measure dynamic displacement and strain at various points on in-plane bulk acoustic resonators. These techniques can characterize in
Lawrence T. Hudson, John F. Seely, Nino R. Pereira, H. Chen, G.J. Williams, R.P. Drake, C.C. Kuranz, C.A. Di Stefano, J. Park
Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic
A new beamline is being commissioned at the Synchrotron Ultraviolet Radiation Facility (SURF III) on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). SURF III is a 380-MeV synchrotron radiation source providing
Steven E. Grantham, Brandon M. Lane, Jorge E. Neira, Sergey Mekhontsev, Leonard M. Hanssen, Mihaela Vlasea
NISTs Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open
Adam J. Fleisher, David A. Long, Zachary D. Reed, David F. Plusquellic, Joseph T. Hodges
Multiheterodyne spectroscopy performed with two stabilized optical frequency combs (OFCs) has shown great potential as a fast, accurate, and high-resolution substitute for existing interferometry methods that require lengthy integration times and precision
Andrew Herzing, Urcan Guler, Xiuli Zhou, Alexandra Boltasseva, Vladimir Shalaev, Theodore Norris
The plasmon resonance characteristics of refractory TiN thin-films has been analyzed using electron energy-loss spectroscopy (EELS). A bulk resonance was observed at 2.81 eV loss and a weaker surface resonance peak was detected at 2.05 eV. These findings
Ian R. Coddington, Nathan R. Newbury, William C. Swann
Dual-comb spectroscopy is an emerging new spectroscopic tool that exploits the frequency resolution, frequency accuracy, broad bandwidth, and brightness of frequency combs for ultra-high resolution, sensitive broadband spectroscopy. By use of two coherent
David A. Long, Adam J. Fleisher, Qingnan Liu, Joseph T. Hodges
A cavity ring-down spectrometer was used to reach the quantum noise limit in the mid-infrared spectral region. Quantum noise was observed not only in the individual ring-down decay events but also in the corresponding ensemble statistics with a magnitude
David W. Allen, Elmer T. Slonecker, Ronald G. Resmini
Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field
Normally occurring charges on small particles provide a means to control the motion of the particles. Using a piezoelectric- based resonator to launch microparticles into a trap, we can vary particle-surface interactions to transfer charge to the particle
Sara Abrahamsson, Robert Ilic, Jan Wisniewski, Brian Mehl, Liya Yu, Lei Chen, Marcelo I. Davanco, Laura Oudjedi, Jean Bernard Fiche, Bassam Hajj, Xin Jin, Joan Pulupa, Christine Cho, Mustafa Mir, Mohamed El Beheiry, Xavier Darzacq, Marcelo Nollmann, Maxime Dahan, Carl Wu, Timothee Lionnett, James Alexander Liddle, Cornelia Bargmann
Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cell nuclei to entire embryos. In any live microscopy application
Yiliang Bao, Felipe Guzman, Arvind Balijepalli, John Lawall, Jacob Taylor, Thomas W. LeBrun, Jason J. Gorman
A new design for an optomechanical accelerometer is presented. The design includes a hemispherical optical cavity that can achieve high finesse and a proof mass that is well-constrained by silicon nitride beams. Based on previous work and analysis, the
Spectral imaging is a form of remote sensing that provides a means of collecting information from surroundings without physical contact. Differences in spectral reflectance over the electromagnetic spectrum allow for the detection, classification, or
Ting Xu, Erich C. Walter, Amit Agrawal, Christopher C. Bohn, Jeyavel Velmurugan, Wenqi Zhu, Henri Lezec, Albert A. Talin
With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the
Adam J. Fleisher, David A. Long, Qingnan Liu, Joseph T. Hodges
High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings with power reflectivity $R\geq99.99\%$. Strictly speaking, however, the optical coatings are often
Eliot Gann, Brian A. Collins, Maolong Tang, John R. Tumbleston, Subhrangsu Mukherjee, Harald W. Ade
Anisotropic scattering patterns have been observed from organic thin films that are isotropic on the scale of the probe in polarized resonant X-ray scattering experiments. The symmetry is broken by local correlations between molecular orientation and
Behrang H. Hamadani, Andrew M. Shore, John F. Roller, Howard W. Yoon, Mark Campanelli
We present a light emitting diode (LED)-based system utilizing a combinatorial flux addition method to investigate the nonlinear relationship in solar cells between the output current of the cell and the incident irradiance level. The magnitude of the
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. The servo is capable of feedback bandwidths up to roughly 1~MHz; loop filter shapes up to fifth order
Kevin L. Silverman, Richard P. Mirin, Ari D. Feldman, Todd E. Harvey, Thomas Schibli, Chien-Chung Lee, Yosuke Hayashi
We demonstrate a device that integrates a III-V semiconductor saturable absorber mirror with a graphene electro-optic modulator, which provides a monolithic solution to modelocking and noise suppression in a frequency comb. The device offers a pure loss
Charles S. Tarrio, Robert F. Berg, Thomas B. Lucatorto, Bruce Lairson, Heidi Lopez, Travis Ayers
We investigated several types of thin-film filters for high intensity work in the extreme-ultraviolet (EUV) spectral range. In our application, with a peak EUV intensity of 2.7 W cm-2, Ni-mesh-backed Zr filters have a typical lifetime of 20 hours, at which
We show how to to achieve spin-selective excitation of the valley-orbit states of group-V donors (P, As, Sb, Bi) in silicon using optical fields. We consider two approaches based on exploiting resonant, far-infrared (IR) transitions of the neutral donor or