Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 26 - 50 of 50

Measuring Light-Matter Interactions in Chip-Based Optical Cavities

Ongoing
A "single emitter" is a structure that exhibits a transition from a high energy state to a low energy state, thereby generating a photon, or light emission. A variety of solid-state single emitters have been discovered or manufactured. One example is a quantum dot, a nanometer-scale structure that

Metrology for extreme ultraviolet lithography

Ongoing
Patterning with light 13 nm brings a host a new challenges Light at 13 nm is well within the vacuum ultraviolet, where radiation is strongly absorbed by all materials. This requires that the technology take place in vacuum and rely on mirrors rather than lenses. Moreover generating sufficient

Metrology for Nanoimprint Lithography

Completed
Nanoimprint Lithography (NIL) was originally perceived as a versatile, low-cost, and high-resolution patterning alternative for optical lithography in CMOS fabrication. However, it is becoming apparent that NIL has great potential for nanotechnology in general. It is capable of patterning sub-10 nm

Metrology for Nanolithography

Ongoing
Small Angle Scattering techniques are employed to measure, with sub-nm precision, pattern shape, dimensions, and orientation for structures created in periodic arrays. Critical-Dimension Small Angle X-ray Scattering (CD-SAXS) utilizes the variable-angle transmission scattering from a small beam size

Modeling and Simulation of Nanofabrication (Archived)

Completed
While self-assembly is still in its relative infancy with respect to practical use, with much additional research required to reach maturity, the more widely utilized top-down methods will continue to require advances and modifications to improve current nanomanufacturing techniques. This modeling

Nanoparticle Tracking for Fluidic Self Assembly (Archived)

Completed
Over the last few decades, scientists have developed a sizable library of nanoscale "building blocks." These nanoparticles have novel thermal, optical, mechanical, and chemical properties relative to their macroscopic counterparts, and organized assemblies of these components promise vast

Nanoplasmonics and Three-Dimensional Plasmonic Metamaterials

Ongoing
Plasmonic materials are composed of metals and insulators that are ordered in geometric arrangements with dimensions that are fractions of the wavelength of light. Research groups are experimenting with a variety of geometric approaches, but all aim to exploit surface plasmons, which are light

Nanotribology for Nanomanufacturing (Archived)

Completed
Friction and wear are major causes of mechanical failures and dissipative energy losses. These shortfalls account for a significant portion of the annual gross domestic product in the United States, amounting to approximately $800 billion in 2010. It is estimated that tens of billions of U.S

Neuromorphic Device Measurements

Ongoing
One type of device that is emerging as an attractive artificial synapse is the resistive switch, or memristor. These devices, which usually consist of a thin layer of oxide between two electrodes, have conductivity that depends on their history of applied voltage, and thus have highly nonlinear

Novel Sources for Focused-ion Beams

Completed
Commercial focused ion beams (FIBs) are used in a wide variety of applications. For example, they serve as diagnostic tools, slicing through a nanodevice to expose its internal structure. They can also shape nanoscale materials either by adding atoms to a structure or by shaving them off. And they

Optical grating scatterometry

Ongoing
In the past few years, scatterometry has emerged as a method for performing linewidth and line profile metrology, especially by the semiconductor industry. The method uses a periodic target containing repetitive lines whose profile, i.e., its width, height, and shape, is to be determined. The

Optical Methods for 3-D Nanostructure Metrology (Archived)

Completed
This project develops new approaches to optical microscopy based on a high magnification optical platform that samples the full 3-D scattered field. Both the semiconductor industry and the evolving nanomanufacturing sector are facing enormous challenges measuring nanometer scale features over large

Optical and Microwave Spectroscopy of Microelectronic Systems

Ongoing
Collaborations with industry leaders have led to new understanding of magnetic damping in advanced materials and replication of our magnetic metrology tools. We investigate fundamental aspects of spin transfer in materials and structures that offer improved performance in future devices such as

Optical and Optoelectronic Materials Characterization

Ongoing
Today's electronics have reached a point where sheer computation power has combined form and function as the key driver of large consumer markets. The demand for portable and pervasive electronics with greater functionality promises significant changes over the next decades in how society interacts

Optical scattering from surfaces

Ongoing
Light Scattering Ellipsometry: The polarization of scattered light can often indicate the source of that scattered light. Using Light Scattering Ellipsometry, whereby the polarization of light scattered into directions out of the plane of incidence is measured for a fixed incident polarization

Photonic Thermometry

Ongoing
NEED Temperature measurement is critical to innumerable industries – precise, accurate, and rapid temperature sensing enables much of the modern technology on which we depend. Most of these temperature sensors are based on a temperature-dependent resistance measurement of a strain-free metal wire or

Platform for Realizing Integrated Molecule Experiments (PRIME)

Ongoing
Blackbodies realize a clear relationship between radiated power and temperature through Planck’s law. While a reliable instrument for temperature and power calibrations, blackbodies are afflicted with a plethora of systematics (e.g., non-ideal emissivity, propagation loss, temperature gradients

Polymers for Next-Generation Lithography

Completed
We work closely with the semiconductor industry to develop and apply measurements with high-spatial and chemically-specific resolution to elucidate the critical materials properties and process kinetics at nanometer scales that are needed to advance next-generation photolithography, including both

In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM

Ongoing
Catalysis is integral to a wide variety of processes throughout the chemical industry, and recently has become an important route to synthesizing one-dimensional (1-D) nanomaterials, including carbon nanotubes and nanowires. However, observing and measuring the reaction kinetics of such catalytic

Strain Measurement for Semiconductor Devices

Ongoing
Mechanical strain is hugely important to semiconductor devices and packages while also being difficult to measure accurately. Strain is engineered into CMOS channels to improve carrier mobility for higher performance at lower power but is also intrinsically present from manufacturing processes where

Templated Assembly of Block Copolymer Films

Completed
Viable nanomanufacturing of templated block copolymers will require a capability to control orientation and line edge roughness of trillions of structures to within a single nanometer, however there are no existing platforms that meet this need. We are developing small angle x-ray and neutron