Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Robert Ilic (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 85

Experimental Variation of Magnification Calibration for Localization Microscopy

September 15, 2019
Author(s)
Craig R. Copeland, Bojan R. Ilic, Samuel M. Stavis
We study the experimental variation of a localization microscope due to temporal and thermal factors, enabling elucidation of the discrepancy between transillumination brightfield and epi-illumination fluorescence of an aperture array for magnification

Revisiting the Photon-Drag Effect in Metal Films

August 2, 2019
Author(s)
Jared H. Strait, Glenn E. Holland, Wenqi Zhu, Cheng Zhang, Bojan R. Ilic, Amit K. Agrawal, Domenico Pacifici, Henri J. Lezec
The photon-drag effect, the rectified current in a medium induced by conservation of momentum of absorbed or redirected light, is a unique probe of the detailed mechanisms underlying radiation pressure. We revisit this effect in gold, a canonical Drude

Architecture for the photonic integration of an optical atomic clock

May 20, 2019
Author(s)
Zachary L. Newman, Vincent N. Maurice, Tara E. Drake, Jordan R. Stone, Travis Briles, Daryl T. Spencer II, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, B. Shen, M.-G Suh, K. Y. Yang, C Johnson, D.M. S. Johnson, Leo Hollberg, K. Vahala, Kartik A. Srinivasan, Scott A. Diddams, John E. Kitching, Scott B. Papp, Matthew T. Hummon
Optical atomic clocks, which rely on high-frequency, narrow-line optical transitions to stabilize a clock laser, outperform their microwave counterparts by several orders of magnitude due to their inherently large quality factors. Optical clocks based on

Nondegenerate Parametric Resonance in Large Ensembles of Coupled Micromechanical Cantilevers with Varying Natural Frequencies

December 28, 2018
Author(s)
Christopher B. Wallin, Roberto De Alba, Daron Westly, Glenn Holland, Scott Grutzik, Richard Rand, Alan Zehnder, Vladimir Aksyuk, Slava Krylov, Robert Ilic
We investigate the collective dynamics and nondegenerate parametric resonance (NPR) of coplanar, interdigitated arrays of microcantilevers distinguished by their cantilevers having linearly expanding lengths and thus varying natural frequencies. Within a

Flow sensor based on the snap-through detection of a curved micromechanical beam

December 1, 2018
Author(s)
Yoav Kessler, Robert Ilic, Slava Krylov, Alexander Liberzon
We report on a flow velocity measurement technique based on snap-through detection of an electrostatically actuated, bistable micromechanical beam. We show that induced elecro-thermal Joule heating and the convective air cooling change the beam curvature

Subnanometer localization accuracy in widefield optical microscopy

July 11, 2018
Author(s)
Craig R. Copeland, Jon C. Geist, Craig D. McGray, Vladimir A. Aksyuk, James A. Liddle, Bojan R. Ilic, Samuel M. Stavis
The common assumption that precision is the limit of accuracy in localization microscopy and the typical absence of comprehensive calibration of optical microscopes lead to a widespread issue - overconfidence in measurement results with nanoscale

Accurate optical stabilization of a Kerr-microresonator frequency comb

June 14, 2018
Author(s)
Travis Briles, Jordan R. Stone, Tara E. Drake, Daryl T. Spencer, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Kartik A. Srinivasan, Scott A. Diddams, Scott B. Papp
Carrier-envelope-phase stabilization of optical waveforms enables exquisitely precise measurements by way of direct optical-frequency synthesis, coherent optical-to-microwave phase conversion, and control of ultrafast waveforms. We report such phase

An Integrated-Photonics Optical-Frequency Synthesizer

May 3, 2018
Author(s)
Daryl T. Spencer, Tara E. Drake, Travis Briles, Jordan R. Stone, Laura C. Sinclair, Connor D. Fredrick, Qing Li, Daron A. Westly, Bojan R. Ilic, Aaron Bluestone, Nicolas Volet, Tin Komljenovic, Seung Hoon Lee, Dong Yoon Oh, Myoung-Gyun Suh, Ki Youl Yang, Martin H. Pfeiffer, Tobias J. Kippenberg, Erik Norberg, Kerry Vahala, Kartik A. Srinivasan, Nathan R. Newbury, Luke Theogarajan, John E. Bowers, Scott A. Diddams, Scott B. Papp
Integrated-photonics microchips now enable a range of advanced functionalities for high- coherence applications like data transmission, for highly optimized physical sensors, and for harnessing quantum states, but with size, extensibility, and portability